• Title/Summary/Keyword: Crack sealing

Search Result 65, Processing Time 0.031 seconds

Application of Antifungal CFB to Increase the Durability of Cement Mortar

  • Park, Jong-Myong;Park, Sung-Jin;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.1015-1020
    • /
    • 2012
  • Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calcite-forming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed $CaCO_3$ precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at $18^{\circ}C$ for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the $CaCO_3$ precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.

Effect of Coating System to Prevent the Deterioration of Concrete Subjected to Compressive Stress (압축응력이 인가된 콘크리트의 열화제어를 위한 표면도막공법의 효과)

  • Yoon, In-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.23-30
    • /
    • 2012
  • For cracked concrete, it is obvious that cracks should be preferential channel for the penetration of aggressive substances such as chloride ions according to the previous researches. In order to extend the lifetime of cracked concrete, critical issues in the performance of the concrete is the risk of chloride-induced corrosion. Even though crack width can be reduced due to the high reinforcement ratio, the question is to which extend these cracks may jeopardize the durability of cracked concrete. If the size of crack is small, surface treatment system can be considered as one of the best options to extend the service life of concrete structures exposed to marine environment simply in terms of cost effectiveness versus durability performance. Thus, it should be decided to undertake an experimental study on the effect of surface coating system, which can be able to seal the concrete and the cracks to aggressive substances-induced corrosion in particular. In this study, it is excuted to examine the effect of surfaced treated systems on chloride penetration and carbonation through compressive stress induced cracks. Experimental results have showed conclusively that critical stress linked with deterioration, should be existed in compressive stress ratio 50 ~ 70% for chloride penetration and 70 ~ 80% for carbonation, respectively. When the critical stress is exceeded in concrete, a comparatively large deterioration was measured where the critical stress in concrete, the increase in the mass transportation is marginal in spite of the large increase in micro-cracks. As for the effect of surface coating system on crack-sealing, it can be seen conclusively that cracks can be healed.

Effects of Oxidation and Hot Corrosion on the Erosion of Silicon Nitride

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.136-139
    • /
    • 2005
  • The effect of oxidation and hot corrosion on the solid particle erosion was investigated for hot-pressed silicon nitride using as-polished, pre-oxidized and pre-corroded specimens by molten sodium sulfates. Erosion tests were performed at 22, 500 and $900^{\circ}C$ using angular silicon carbide particles of mean diameter $100{\mu}m$. Experimental results show that solid particle erosion rate of silicon nitride increases with increasing temperature for as-polished or pre-oxidized specimens in consistent with the prediction of a theoretical model. Erosion rate of pre-oxidized specimens is lower than that of as-polished specimens at $22^{\circ}C$, but it is higher at $900^{\circ}C$. Lower erosion rate at $22^{\circ}C$ in the pre-oxidized specimens is attributed due to the blunting of surface flaws, and the higher erosion rate at $900^{\circ}C$ is due to brittle lateral cracking. Erosion rate of pre-corroded specimens decreases with increasing temperature. Less erosion at $900^{\circ}C$ than at $22^{\circ}C$ is associated with the liquid corrosion products sealing off pores at $900^{\circ}C$ and the absence of inter-granular crack propagation observed at $22^{\circ}C$.

Investigation of Likelihood of Cracking in Reinforced Concrete Bridge Decks

  • ElSafty, Adel;Abdel-Mohti, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.79-93
    • /
    • 2013
  • One of the biggest problems affecting bridges is the transverse cracking and deterioration of concrete bridge decks. The causes of early age cracking are primarily attributed to plastic shrinkage, temperature effects, autogenous shrinkage, and drying shrinkage. The cracks can be influenced by material characteristics, casting sequence, formwork, climate conditions, geometry, and time dependent factors. The cracking of bridge decks not only creates unsightly aesthetic condition but also greatly reduces durability. It leads to a loss of functionality, loss of stiffness, and ultimately loss of structural safety. This investigation consists of field, laboratory, and analytical phases. The experimental and field testing investigate the early age transverse cracking of bridge decks and evaluate the use of sealant materials. The research identifies suitable materials, for crack sealing, with an ability to span cracks of various widths and to achieve performance criteria such as penetration depth, bond strength, and elongation. This paper also analytically examines the effect of a wide range of parameters on the development of cracking such as the number of spans, the span length, girder spacing, deck thickness, concrete compressive strength, dead load, hydration, temperature, shrinkage, and creep. The importance of each parameter is identified and then evaluated. Also, the AASHTO Standard Specification limits liveload deflections to L/800 for ordinary bridges and L/1000 for bridges in urban areas that are subject to pedestrian use. The deflection is found to be an important parameter to affect cracking. A set of recommendations to limit the transverse deck cracks in bridge decks is also presented.

Mechanical Tenacity Analysis of Moisture Barrier Bags for Semiconductor Packages

  • Kim, Keun-Soo;Kim, Tae-Seong;Min Yoo;Yoo, Hee-Yeoul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • We have been using Moisture Barrier Bags for dry packing of semiconductor packages to prevent moisture from absorbing during shipping. Moisture barrier bag material is required to be waterproof, vapor proof and offer superior ESD (Electro-static discharge) and EMI shielding. Also, the bag should be formed easily to the shape of products for vacuum packing while providing excellent puncture resistance and offer very low gas & moisture permeation. There are some problems like pinholes and punctured bags after sealing and before the surface mount process. This failure may easily result in package pop corn crack during board mounting. The bags should be developed to meet the requirements of excellent electrical and physical properties by means of optimization of their raw material composition and their thickness. This study investigates the performance of moisture barrier bags by characterization of their mechanical endurance, tensile strength and through thermal analysis. By this study, we arrived at a robust material composition (polyester/Aluminate) for better packing.

  • PDF

Optimization of Pulsed Nd:YAG Laser Welding Conditions for Sealing of Lithium-ion Battery (리튬이온전지의 밀봉용접을 위한 펄스 Nd:YAG레이저 용접조건의 최적화)

  • Kim, Jong-Do;Yoo, Seung-Jo;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.623-628
    • /
    • 2006
  • Laser material processing is a very fast advancing technology for various industrial applications. because of many advantages. Its major advantage of less and controlled heat input has been exploited successfully for the very critical application of aluminium alloy welding. This study suggested the occurrence source of weld-defects and its solution methods in a welding of lithium ion battery by pulsed Nd:YAG laser. In experiment. battery case has changed over joint geometry from welding of side position to flat one. In the case of a electrolyte injection hole in order to seal it. welding is carried out after pressing Al ball. At this time. an eccentric degree. contact length and gap are worked as a major parameters. As improving the method of Al ball pressing. it was able to reduce an eccentricity. increase the contact length and decrease gap. As a results of a experiment. a sound weld bead shape and crack-free weld bead can be obtained.

Optimization of Pulsed Nd:YAG Laser Welding Conditions for Sealing of Lithium-ion Battery (리튬이온전지의 밀봉용접을 위한 펄스 Nd:YAG레이저 용접조건의 최적화)

  • Kim, Jong-Do;Yoo, Seung-Jo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.339-343
    • /
    • 2005
  • Laser material processing is a very fast growing technology for various industrial applications, because of many advantages. Its major advantage of less and controlled heat input has been exploited successfully for the very critical application of aluminium alloy welding. This study suggested the occurrence source of weld-defects and its solution methods in a welding of lithium ion battery by pulsed Nd:YAG laser. In experiment, battery case has changed over joint geometry from welding of side position to flat one. In case of a electrolyte injection hole in order to seal it, welding is carried out after pressing Al ball. At this time, an eccentric degree, contact length and gap are worked as a major parameters. As improving the method of Al ball pressing, it was able to reduce an eccentricity, increase the contact length and decrease gap. As a results of a experiment, a sound weld bead shape and crack-free weld bead can be obtained.

  • PDF

Electrical and Optical Characteristics of Plasma Display Panel Fabricated by Vacuum In-line Sealing (진공 인라인 실장에 의해 제작된 플라즈마 디스플레이 패널의 전기적.광학적 특성)

  • Park, Sung-Hyun;Lee, Neung-Hun;Kim, Jee-Hoon;Lee, Sang-Hoon;Chun, Seog-Hwan;Chu, Soon-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.594-597
    • /
    • 2004
  • 본 연구에서는 진공 인라인 실장 기술을 이용하여 제작한 플라즈마 디스플레이 패널(PDP)의 전기적 광학적 특성을 측정하여, 일반적인 실장 방법을 이용한 PDP의 특성과 비교 분석하였다. 본 실험에 사용된 패널은 Screen Printer를 이용한 상 하부전극과 하판 유전체, 상판 투명유전체, 격벽 및 E-Beam Evaporation 방법을 이용하여 증착한 MgO 보호막으로 이루어져 있으며, 분위기 온도 $430^{\circ}C$, Ne-Xe(4%) 400[torr]압력 하에서 실장하였다. 높은 분위기 온도로 인하여 MgO에 Crack이 발생하였으나 지속적인 연구를 진행하여 최적의 실장 조건을 확립할 수 있었다. 이러한 진공 인라인 실장 기술은 추가적인 Annealing 공정이 필요하지 않아 공정의 단축을 모색할 수 있으며, MgO의 수화를 제거함으로써 일반적인 실장 방법을 이용한 패널보다 더 우수한 전기적 광학적 특성을 얻을 수 있었다.

  • PDF

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

Optimum Monitoring Parameters for the Safety of Mechanical Seals (미캐니컬 씰의 안전운용 감시를 위한 최적 계측인자)

  • Soon-Jae Lim;Man-Yong Choi
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.214-219
    • /
    • 1997
  • The mechanical seals, which are installed in rotating machines like pump and compressor, are generally used as sealing devices in the many fields of industries. The failure of mechanical seals such as leakage, crack, breakage, fast and severe wear, excessive torque, and squeaking results in big problems. To identify abnormal phenomena on mechanical seals and to propose the proper monitoring parameter for the failure of mechanical seals, sliding wear experiments were conducted. Acoustic emission, torque, and temperature were measured during experiments. Optical microstructure was observed for the wear processing after every 10 minute sliding at rotation speed of 1750 rpm and scanning electron microscopy was also observed. Except for the initial part of every experiment, the variation of acoustic emission was well coincided with torque variation during the experiments. This study concludes that acoustic emission and torque are proper monitoring parameters for the failure of mechanical seals. The intensity of acoustic emission signals is measured in root mean square voltage. Temperature of sealing face will be used as a parallel parameter for increasing the reliability of monitoring system.

  • PDF