• 제목/요약/키워드: Crack load

검색결과 1,761건 처리시간 0.028초

Zr-기 벌크 아몰퍼스 금속의 충격 파괴 거동 (Impact Fracture Behaviors of Zr-Based Bulk Amorphous Metals)

  • 고동균;정영진;신형섭;오상엽
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1246-1251
    • /
    • 2003
  • The fracture behaviors of Zr-based bulk amorphous metals(BAMs) having compositions of $Zr_{55}Al_{10}Ni_{5}Cu_{30}$, were investigated under impact loading and quasi-static conditions. For experiments, a newly devised instrumented impact testing apparatus and the subsize Charpy specimens were used. The influences of loading rate and the notch shape on the fracture behavior of the Zr-based BAM were examined. The Zr-based BAMs showed an elastic deformation behavior without any plastic deformation on it before fracture. Most fracture energies were absorbed in the process of the crack initiation. The maximum load and fracture absorbed energy under quasi-static condition were larger than those under impact condition. However, there existed relatively insignificant notch shape effect. Fracture surfaces under impact loading were smoother than those under quasi-static loading. The absorbed fracture energy appeared differently depending on the extent of the vein-like pattern region due to the shear bands developed at the notch tip. It can be found that the fracture energy of the Zr-Al-Ni-Cu alloy is closely related with the development of shear bands during fracture.

  • PDF

Cohesive Zone Model을 이용한 접착제 물성평가 : 모드 I (Evaluation of Adhesive Properties Using Cohesive Zone Model : Mode I)

  • 이찬주;이상곤;고대철;김병민
    • 대한기계학회논문집A
    • /
    • 제33권5호
    • /
    • pp.474-481
    • /
    • 2009
  • Fracture models and criteria of adhesive with two parameters, namely $G_C$ and ${\sigma}_{max}$, have been developed to describe the fracture process of adhesive joints. Cohesive zone model(CZM) is a representative two parameter failure criteria approach. In CZM, ${\sigma}_{max}$ is a critical, limiting maximum value of the stress in the damage zone ahead of the crack and is assumed to have some physical significance in adhesive failure. Based on CZM and finite element analysis method, the relationship between fracture load and adhesive properties, as $G_{IC)$ and $({\sigma}_{max})_I$, was investigated in adhesively bonded joint tensile test and T-peel test. The two parameters in tensile mode loading were evaluated by using the relationship. The value of $G_{\IC}$ evaluated by proposed method showed close agreement with analytical solution for tapered double cantilever beam(TDCB) test which proposed in an ASTM standard.

단기하중을 받는 FRP-보강근 콘크리트 보의 휨균열폭 특성 (Characteristics of Flexural Cracking Widths in FRP-Reinforced Concrete Beams Subjected to Short-Term Loads)

  • 최봉섭
    • 한국산학기술학회논문지
    • /
    • 제16권10호
    • /
    • pp.7053-7060
    • /
    • 2015
  • 콘크리트 부재에서 FRP-보강근의 사용은 철근의 사용에 비해서 일반적으로 낮은 탄성계수와 부착성능으로 인하여 보다 넓은 균열폭을 초래 할 수 있다. 따라서 본 연구에서는 9개의 장방형보와 3개의 T형보로 구성된 총 12개의 시험체들로부터 4점가력 휨실험을 통하여 얻어진 균열폭 결과들과 기존 ACI 440.1R-06 제안식으로 계산된 결과들을 비교 분석하여 설계변수들이 균열폭에 미치는 영향과 적용 범위에 대한 문제점들을 파악하였다. 결과로서 주요 설계변수의 하나인 변동계수, $k_b$ 값은 0.6~1.88 범위에서 1.05의 평균값과 약 40%의 높은 변동계수를 나타냈다.

실리콘의 화학기계적 미세가공 특성 (Characterization of the Chemical Mechanical Micro Machining for Single Crystal Silicon)

  • 정상철;박준민;이현우;정해도
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.186-195
    • /
    • 2002
  • The mechanism of micro machining of reacted layer on silicon surface were proposed. The depth of reacted layer and the change of mechanical property were measured and analyzed. Depth of hydrated layer which is created on the surface of silicon by potassium hydrate was analyzed with SEM and XPS. The decrease of the micro victors hardness of silicon surface was shown with the increase of the concentration of potassium hydrate and the change of the dynamic friction coefficient by chemical reacted layer was measured due to the readiness of machining. The experiment of groove machining was done with 3-axis machine with constant load. With chemical mechanical micro machining the surface crack and burrs generated by both brittle and ductile micro machining were diminished. And the surface profile and groove depth was shown in accordance with the machining speed and reaction time with SEM and AFM.

ATOS 80 고장력강의 보호가스량에 따른 용접부 방사선검사에 관한 연구 (A Study on Indications in Radiographic Tests in Welding Specimens According to Shielded Amounts of ATOS 80 High-strength Steel)

  • 백정환;최병기
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.910-914
    • /
    • 2012
  • In constructing all kinds of equipment and steel structures, discontinuous areas such as weld defects formed in a welded structure tend to generate cracks that will result in damage. In this study, ATOS high-strength steel welding becomes important in butt welding where the tensile strength of the steel is over 80kg/$mm^2$. Structural discontinuities such as joints are more susceptible cracks in part due to their repeated loading and fatigue crack growth. The quality of parts produced depend or the shielded amounts of steel and on the skill of the welders in making strong welds. It is true that there are many factors that can be used to generate a lot of research in this area. However geometry and load conditions due to the combined effects with many issues could be solved through this study. Butt welding material at a plate thickness of 12t in ATOS 80 high-strength steel with a 4 pass, 20l/min, 24V/200A welder is good at making specimens with the quality shown in radiographic testing.

Out-of-plane ductile failure of notch: Evaluation of Equivalent Material Concept

  • Torabi, A.R.;Saboori, Behnam;Kamjoo, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.559-569
    • /
    • 2020
  • In the present study, the fracture toughness of U-shaped notches made of aluminum alloy Al7075-T6 under combined tension/out-of-plane shear loading conditions (mixed mode I/III) is studied by theoretical and experimental methods. In the experimental part, U-notched test samples are loaded using a previously developed fixture under mixed mode I/III loading and their load-carrying capacity (LCC) is measured. Then, due to the presence of considerable plasticity in the notch vicinity at crack initiation instance, using the Equivalent Material Concept (EMC) and with the help of the point stress (PS) and mean stress (MS) brittle failure criteria, the LCC of the tested samples is predicted theoretically. The EMC equates a ductile material with a virtual brittle material in order to avoid performing elastic-plastic analysis. Because of the very good match between the EMC-PS and EMC-MS combined criteria with the experimental results, the use of the combination of the criteria with EMC is recommended for designing U-notched aluminum plates in engineering structures. Meanwhile, because of nearly the same accuracy of the two criteria and the simplicity of the PS criterion relations, the use of EMC-PS failure model in design of notched Al7075-T6 components is superior to the EMC-MS criterion.

변동 응력을 이용한 커넥팅 로드 강건 설계 (Robust Design of Connecting Rod Using Variable Stress)

  • 이승우;김한규;이태현;양철호
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.716-723
    • /
    • 2016
  • A connecting rod is a crucial part for transmitting an explosive force to the crankshaft in the engine. Stress concentration in connecting rod due to the accumulation of the repeated load may initiate micro crack and result in a crucial break down of the component. Two approaches are adopted to obtain a robust design of connecting rod. Inner and outer array matrix based on combinations of control factors and noise factors are constructed for using Taguchi method. Calculated stress results for each element of matrix are plotted in the Goodman diagram. Robust design approach by Taguchi method reduces stress concentration occurred in small end fillet area of the default model. Variable stress approach using Goodman diagram also confirms a robust design by Taguchi method.

다발형 폴리아미드섬유 보강 콘크리트의 휨거동에 관한 실험적 연구 (A Experimental Study on the Flexural Behavior of Bundle Type Polyamide Fiber Reinforced Concrete)

  • Jeon, Chan Ki;Jeon, Joong Kyu
    • 한국재난정보학회 논문집
    • /
    • 제10권1호
    • /
    • pp.61-70
    • /
    • 2014
  • 일반적으로 건설재료 용도로 많이 사용되고 있는 유기섬유 보강 콘크리트는 섬유 자체의 인장강도 및 탄성계수는 낮지만, 휨거동, 균열에 대한 저항성 및 충격저항성 등의 특성은 우수하며, 내화학성이 뛰어나고 부식의 우려가 없는 것으로 널리 알려져 있다. 최근 해외에서는 유기섬유 보강재를 터널 숏크리트와 프리캐스트 세그먼트 라이닝, 교량 슬래브 및 PC제품 분야에서 일부 활용되고 있으며, 그 종류 또한 다양하다. 본 연구에서는 다발형 폴리아미드섬유를 혼입한 콘크리트의 휨거동 특성을 ASTM C 1609 및 KS F 2566에 준하여 하중-처짐 관계를 도출하여 유기섬유 보강 콘크리트의 적용 가능성을 검토하였다.

FATIGUE SIMULATION OF POWER TRAIN COMPONENTS DURING THE DESIGN PROCESS

  • Steiner, W.;Steinwender, G.;Unger, B.
    • International Journal of Automotive Technology
    • /
    • 제2권1호
    • /
    • pp.9-16
    • /
    • 2001
  • The lifetime of power train components can be improved dramatically by finding crack initiation points with suitable software tools and optimization of the critical areas. With increasing capacities of computers the prediction of the lifetime for components by numerical methods gets more and more important. This paper discusses some applications of the outstanding fatigue simulation program FEMFAT supporting the assessment of uniaxially and multiaxially loaded components (as well as welding seams and spot joints). The theory applied in FEMFAT differs in some aspects from classical approaches like the nominal stress concept or the local one and can be characterized by the term "influence parameter method". The specimen S/N-curve is locally modified by different influence parameters as stress-gradient to take into account notch effects, mean-stress influence which is quantified by means of a Haigh-diagram, surface roughness and treatments, temperature, technological size, etc. It is possible to consider plastic deformations resulting in mean-stress rearrangements. The dynamic loading of power train components is very often multiaxial, e.g. the stress state at each time is not proportional to one single stress state. Hence, the directions of the principal axes vary with time. We will present the way how such complex load situations can be handled with FEMFAT by the examples of a crank case and a gear box.

  • PDF

손상평가 기법을 이용한 Hi-Form 접합부의 강성평가 (Evaluation of the Stiffness of Hi-Form Joint Using Damage Detection Method)

  • 장극관;천영수;강우주
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권2호통권54호
    • /
    • pp.137-144
    • /
    • 2009
  • 본 연구에서는 최근 계단공사의 시공성 개선을 위하여 새롭게 제안된 Hi-Form 접합부를 대상으로 동특성 정보를 이용하는 계확정기법을 응용하여 접합부의 강성평가를 수행하였으며 해석 시 동 접합부의 합리적인 모델링기법을 제시하였다. 실험 및 해석결과, 균열패턴 및 하중-변형관계 그리고 손상분포로부터 Hi-Form 접합부는 완전한 응력전달을 위한 강접합으로 간주하기 어려운 것으로 나타났으며, 실험결과에 근거하여 Hi-Form 접합부를 약 50%의 강성감소 요소로 모델링 할 것을 제안하였다.