• Title/Summary/Keyword: Crack density

Search Result 395, Processing Time 0.028 seconds

Influence of Exposure Environmental Conditions on the Crack Healing Performance of Self-healing Repair Mortar Specimens (노출환경 조건이 자기치유형 보수 모르타르 시험체의 균열 치유성능에 미치는 영향)

  • Lee, Woong-Jong;Lee, Hyun-Ho;Ahn, Sang-Wook;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.283-288
    • /
    • 2018
  • Since the crack self-healing materials are activated according to the exposure environmental conditions from the time of crack occurrence, it is very important to clarify the relationship between the healing performance and the exposure environmental conditions of the crack surface. In this paper, the influence of the exposure environmental conditions on the crack healing performance of self-healing repair mortar was investigated through the water permeability test. The influence of temperature and humidity on the crack width of cracked specimens was evaluated. As a result of measuring the change of the crack width, the effect of curing temperature was negligible but it was confirmed that crack-closing occurred due to the change of dry-wet condition. The healing materials produced on the crack surface of the specimens was identified as calcite minerals. Since the minerals with high density are precipitated under the influence of gravity, the healing performance is somewhat different according to the direction of the crack surface, and the healing performance was significantly improved in the wet exposure condition than the air exposure condition.

Probabilistic Remaining Life Assessment Program for Creep Crack Growth (크리프 균열성장 모델에 대한 확률론적 수명예측 프로그램)

  • Kim, Kun-Young;Shoji, Tetsuo;Kang, Myung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.100-107
    • /
    • 1999
  • This paper describes a probabilistic remaining life assessment program for the creep crack growth. The probabilistic life assessment program is developed to increase the reliability of life assessment. The probabilistic life assessment involves some uncertainties, such as, initial crack size, material properties, and loading condition, and a triangle distribution function is used for random variable generation. The resulting information provides the engineer with an assessment of the probability of structural failure as a function of operating time given the uncertainties in the input data. This study forms basis of the probabilistic life assessment technique and will be extended to other damage mechanisms.

  • PDF

Evaluation of Creep Crack Growth Failure Probability for High Temperature Pressurized Components Using Monte Carlo Simulation (몬테카를로법을 이용한 고온 내압 요소의 크리프 균열성장 파손확률 평가)

  • Lee, Jin-Sang;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.28-34
    • /
    • 2006
  • A procedure of estimating failure probability is demonstrated for a pressurized pipe of CrMo steel used at $538^{\circ}C$. Probabilistic fracture mechanics were employed considering variations of pressure loading, material properties and geometry. Probability density functions of major material variables were determined by statistical analyses of implemented data obtained by previous experiments. Distributions of the major variables were reflected in Monte Carlo simulation and failure probability as a function of operating time was determined. The creep crack growth life assessed by conventional deterministic approach was shown to be conservative compared with those obtained by probabilistic one. Sensitivity analysis for each input variable was also conducted to understand the most influencing variables to the residual life analysis. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

Analysis for Cracks of Functionally Gradient Materials by Photoelastic Experiment (광탄성실험에 의한 함수구배 재료 균열 해석)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.48-53
    • /
    • 2004
  • This paper suggested the method determing the stress intensity factor (SIF) for functionally gradient materials (FGMs) by photo elastic experimental method. The SIF for the center crack in a finite rectangulat plate with a linear variation of shear modulus with constant density and Poisson's ratio along the direction of the crack under mode I static loading is obtained. The exponential and linear variation of stress fields are used for obtaining the SIF. The greater crack length, the increaser the difference of the SIF between right and left side crack tip.

  • PDF

Transient Elastodynamic Mode III Crack Growth in Functionally Graded Materials (함수구배재료에서 천이탄성동적모드 III 균열전파)

  • Lee, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.851-858
    • /
    • 2010
  • A generalized elastic solution for a transient mode III crack propagating along the gradient in functionally graded materials (FGMs) is obtained through an asymptotic analysis. The shear modulus and density of the FGMs are assumed to vary exponentially along the gradient. The stress and displacement fields near the crack tip are obtained in terms of powers of radial coordinates, and the coefficients depend on the time rates of the change of the crack tip speed and stress intensity factors. The influence of nonhomogeneity and transients on the higher order terms of the stress and displacement fields is discussed.

Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics

  • Lee, Bang Yeon;Kim, Jin-Keun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.455-468
    • /
    • 2010
  • This paper presents a prediction and simulation method of tensile stress-strain curves of Engineered Cementitious Composites (ECC). For this purpose, the bridging stress and crack opening relations were obtained by the fiber bridging constitutive law which is quantitatively able to consider the fiber distribution characteristics. And then, a multi-linear model is employed for a simplification of the bridging stress and crack opening relation. In addition, to account the variability of material properties, randomly distributed properties drawn from a normal distribution with 95% confidence are assigned to each element which is determined on the basis of crack spacing. To consider the variation of crack spacing, randomly distributed crack spacing is drawn from the probability density function of fiber inclined angle calculated based on sectional image analysis. An equation for calculation of the crack spacing that takes into quantitative consideration the dimensions and fiber distribution was also derived. Subsequently, a series of simulations of ECC tensile stress-strain curves was performed. The simulation results exhibit obvious strain hardening behavior associated with multiple cracking, which correspond well with test results.

The nonlocal theory solution for two collinear cracks in functionally graded materials subjected to the harmonic elastic anti-plane shear waves

  • Zhou, Zhen-Gong;Wang, Biao
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.63-74
    • /
    • 2006
  • In this paper, the scattering of harmonic elastic anti-plane shear waves by two collinear cracks in functionally graded materials is investigated by means of nonlocal theory. The traditional concepts of the non-local theory are extended to solve the fracture problem of functionally graded materials. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress field near the crack tips. To make the analysis tractable, it is assumed that the shear modulus and the material density vary exponentially with coordinate vertical to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips.

Evaluation of Creep Crack Growth Failure Probability at Weld Interface Using Monte Carlo Simulation (몬테카를로 모사에 의한 용접 계면에서의 크리프 균열성장 파손 확률 평가)

  • Lee Jin-Sang;Yoon Kee-Bong
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.61-66
    • /
    • 2005
  • A probabilistic approach for evaluating failure risk is suggested in this paper. Probabilistic fracture analyses were performed for a pressurized pipe of a Cr-Mo steel reflecting variation of material properties at high temperature. A crack was assumed to be located along the weld fusion line. Probability density functions of major variables were determined by statistical analyses of material creep and creep crack growth data measured by the previous experimental studies by authors. Distributions of these variables were implemented in Monte Carlo simulation of this study. As a fracture parameter for characterizing growth of a fusion line crack between two materials with different creep properties, $C_t$ normalized with $C^*$ was employed. And the elapsed time was also normalized with tT, Resultingly, failure probability as a function of operating time was evaluated fur various cases. Conventional deterministic life assessment result was turned out to be conservative compared with that of probabilistic result. Sensitivity analysis for each input variable was conducted to understand the most influencing variable to the analysis results. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

Detection of Concrete Surface Cracks using Fuzzy Techniques (퍼지 기법을 이용한 콘크리트 표면의 균열 검출)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1353-1358
    • /
    • 2010
  • In this paper, we propose a detection method that automatically detects concrete surface cracks using fuzzy method in the image of concrete surface cracks. First, the proposed method detecting concrete surface cracks detects the candidate crack areas by applying R, G, B channel values of the concrete crack image to fuzzy method. We finally detect cracks by the density information about the detected candidate areas after we remove the detailed noises on the image of the concrete surface cracks. The experiments using real concrete images showed that the proposed method is greatly improved of crack detection compared with the conventional methods.

Behavior of Fatigue Crack Initiation and Propagation under Cyclic Tensile or Torsional Loading with Superimposed Static Biaxial Load (이축 정적 하중이 부가된 반복 인장 혹은 비틀림 하중하에서 균열 발생과 성장 거동)

  • Heo, Yong-Hak;Park, Hwi-Rip;Gwon, Il-Beom;Kim, Jin-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1446-1455
    • /
    • 2000
  • Fatigue crack initiation and propagation behavior under cyclic biaxial loading has been investigated using thin-walled tubular specimen with a hole. Two types of biaxial loading system, i.e. cyclic tensile loading with super-imposed static torsional load and cyclic torsional loading with superimposed static tensile load, with various values of the biaxial loading ratio, $\tau$ s/ $\sigma$ max (or $\tau$ max/ $\sigma$s) were employed. Fatigue tests show that fatigue crack near the hole initiates and propagates at 900 and 450 direction to the longitudinal direction of the specimen under cyclic tensile and torsion loading with static biaxial stress, respectively, and the static biaxial stress doesn't have any great influence on fatigue crack initiation and growth direction. Stress analysis near the hole of the specimen shows that the crack around the hole initiates along the plane of maximum tangential stress range. Fatigue crack growth rates were evaluated as functions of equivalent stress intensity factor range, strain energy density factor range and crack tip opening displacement vector, respectively. It is shown that the biaxial mode fatigue crack growth rates can be relatively consistently predicted with these cyclic parameters.