• 제목/요약/키워드: Crack Reduction

검색결과 431건 처리시간 0.028초

선박 추진용 유압작동식 다판 마찰클러치 고착현상 고장탐구 (Root cause analysis of sticking in hydraulically actuated multi-disc friction clutch for ship propulsion)

  • 정상후;김정렬;신재원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권4호
    • /
    • pp.330-336
    • /
    • 2017
  • 본 연구는 고무 탄성커플링을 적용한 특수선의 디젤엔진 추진체계에서 유압작동식 다판, 습식 마찰클러치의 고착에 대한 원인분석 내용이다. 클러치 고착원인 분석을 위해 피쉬본((fish bone) 방법으로 클러치 및 감속기어 분해조사, 선박 탑재상태에서의 체계 시험 및 부품 조사, 비파괴 시험 등을 통해 수행하였다. 마찰판 고착은 클러치 중공축의 크랙부를 통해 제어오일 누설로 인한 슬립, 마찰열 발생에 의해 발생되었다. 마찰판 냉각 오일 또한 크랙부를 통해 동시에 누설에 기인한 유량부족으로 클러치 마찰판은 국부적인 눌러붙임이 발생하는 핫스팟(hot spot)에 의해 고착되었다.

덧씌우기 아스팔트 포장체의 전단반사균옅 모사시험을 이용한 줄눈 실링재의 반사균열 지연효과 비교분석 (Evaluation of Sealing Effect on Performance of Overlaid Asphalt Pavement using Accelerated Reflection Cracking Test in Shear Mode)

  • 최동춘;이상범;이영관;김광우
    • 한국도로학회논문집
    • /
    • 제5권3호
    • /
    • pp.1-9
    • /
    • 2003
  • 본 논문은 시멘트 콘크리트 포장 위에 덧씌우기한 아스팔트 콘크리트 포장에서 발생하는 반사균열 제어를 위해 줄눈 실링재를 사용한 포장에서의 반사균열을 평가하기 위하여 수행되었다. 사용된 시험방법은 전단반사균열 모사실험 방법으로 실내에서 덧씌우기 아스팔트의 반사균열 저항성 시험을 위해 개발된 시험기법이다. 실험을 통하여 줄눈 실링재는 반사균열 제어에 효과가 있는 것으로 나타났다. 실링재 E를 사용하였을 때 피로수명은 가장 크게 나타났으나 수평변형은 상대적으로 크게 나타났고, B의 경우 수평변형은 가장 적게 나타났고 동적 안정도도 가장 크게 나타났다. 일반적으로 실링재의 인장강도가 높은 것일수록 혼합물의 반사균열저항성이 더 좋았다.

  • PDF

알루미늄 압출 관재의 표면 결함이 하이드로포밍 성형에 미치는 영향도에 관한 연구 (The effects of the surface defects on the hydroformability of extruded aluminum tubes)

  • 김대현;김봉준;박광수;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2005
  • The need for improved fuel efficiency, weight reduction has motivated the automotive industry to focus on aluminum alloys as a replacement for steel-based alloy. To cope with the needs for high structural rigidity with low weight, it is forecasted that substantial amount of cast components will be replaced by tubular parts which are mainly manufactured by the extruded aluminum tubes. The extrusion process is utilized to produce tubes and hollow sections. Because there is no weld seam, the circumferential mechanical properties may be uniform and advantageous for hydroforming. However the possibility of the occurrence of a surface defect is very high, especially due to the temperature increase from forming at high pressure when it comes out of the bearing and the roughness of the bearing, which cause the surface defects such as the dies line and pick-up. And when forming a extruded aluminum tube, the free surface of the tube becomes rough with increasing plastic strain. This is well known as orange peel phenomena and has a great effect not only on the surface quality of a product but also on the forming limit. In an attempt to increase the forming limit of the tubular specimen, in the present paper, surface asperities generated during the hydroforming process are polished to eliminate the weak positions of the tube which lead to a localized necking. It is shown that the forming limit of the tube can be considerably improved by simple method of polishing the surface roughness during hydroforming. And also the extent of the crack propagation caused by dies lines generated during the extrusion process is evaluated according to the deformed shape of the tube.

  • PDF

초음파 처리에 의한 수화제 현탁액의 분산 특성 (Dispersion Characteristics of Wettable Powder Suspension by Ultrasonication)

  • 나우정;주은선;김영복;송민근;이경렬
    • Journal of Biosystems Engineering
    • /
    • 제28권4호
    • /
    • pp.351-360
    • /
    • 2003
  • This study was carried out to settle the plugging problem which occurs frequently when agricultural wettable powder is used in pest control work using the crushing and the dispersing effects caused by irradiation of ultrasonic wave. Sonication was applied to the wettable powder suspension in a beaker for 30 seconds using a 28 kHz, 200 W PZT BLT, and the image of suspension before and after sonication was observed using a microscope and a SEM. The image of tow commercial wettable powder suspensions in water observed using an optics microscope showed that the agglomerated particles were irregularly distributed over the whole observed region when stirred mechanically, while showing more uniform distribution composed of comparatively single particles in the whole observed region after sonication. Concerning the above, the projected areas of particles in the four suspensions after sonication were decreased distinctively in the observed range of the microscope and the atomization of crystals was much developed. Over the measured range of 5.6∼4,157 ${\mu}$m particle size, the overall projected area of particles was decreased to 58.3∼89.6% on the average after sonication. When the SEM images of sonicated wettable powder suspensions dissolved in water and CH$_3$OH were compared to the suspensions before sonication, such phenomena as the atomization of particles, the expansion of voids between particles, the reduction and the decrease of agglomerated particle groups, and the progress of crack developments on the surface of flake-shaped particles were observed. It seemed possible that the plugging problem that occurs frequently in pest control machine when using wettable powder would be settled by the use of sonication.

나노 구리-니켈 혼합분말의 충격압축법을 통한 복합벌크재의 제조 및 특성평가 (Manufacturing and Evaluation of the Properties of Hybrid Bulk Material by Shock-compaction of Nanocrystalline Cu-Ni Mixed Powder)

  • 김우열;안동현;박이주;김형섭
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.196-201
    • /
    • 2014
  • In this study, nanocrystalline Cu-Ni bulk materials with various compositions were cold compacted by a shock compaction method using a single-stage gas gun system. Since the oxide layers on powder surface disturbs bonding between powder particles during the shock compaction process, each nanopowder was hydrogen-reduced to remove the oxide layers. X-ray peak analysis shows that hydrogen reduction successfully removed the oxide layers from the nano powders. For the shock compaction process, mixed powder samples with various compositions were prepared using a roller mixer. After the shock compaction process, the density of specimens increased up to 95% of the relative density. Longitudinal cross-sections of the shock compacted specimen demonstrates that a boundary between two powders are clearly distinguished and agglomerated powder particles remained in the compacted bulk. Internal crack tended to decrease with an increase in volumetric ratio of nano Cu powders in compacted bulk, showing that nano Cu powders has a higher coherency than nano Ni powders. On the other hand, hardness results are dominated by volume fraction of the nano Ni powder. The crystalline size of the shock compacted bulk materials was greatly reduced from the initial powder crystalline size since the shock wave severely deformed the powders.

팽창재와 수축저감제를 사용한 HPFRCC의 수축 저감 성능 (Shrinkage Reduction Performance of HPFRCC Using Expansive and Srhinkage Reducing Admixtures)

  • 박정준;문재흠;박준형;이장화;김성욱
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권5호
    • /
    • pp.34-40
    • /
    • 2014
  • HPFRCC는 물-결합재비 (W/B)가 20%로 상당히 낮고 굵은 골재를 사용하지 않으며, 고분말 혼화재료를 혼입하기 때문에 자기수축이 상당히 크게 발생하여 구조물 적용 시 균열저감대책이 필요하다. 따라서 이 연구에서는 HPFRCC의 수축을 효율적으로 저감시키기 위한 방법으로 수축저감제와 팽창재의 사용을 검토하기 위하여 이들의 단독 또는 병행 혼입률에 따른 역학적 특성과 구속 수축특성을 평가하였다. 구속수축 실험 중에서 링-테스트 (Ring-test)를 통하여 HPFRCC에 사용되는 시멘트에 대하여 중량비로 수축저감제 1%와 팽창재를 7.5%를 병행 사용하였을 경우 압축강도와 인장강도가 크게 저하되지 않으면서도 수축을 가장 효율적으로 저감시킬 수 있는 최적 배합임을 도출하였고 수정된 건조수축 균열실험을 통하여 이를 검증하였다.

Saw-tooth softening/stiffening - a stable computational procedure for RC structures

  • Rots, Jan G.;Invernizzi, Stefano;Belletti, Beatrice
    • Computers and Concrete
    • /
    • 제3권4호
    • /
    • pp.213-233
    • /
    • 2006
  • Over the past years techniques for non-linear analysis have been enhanced significantly via improved solution procedures, extended finite element techniques and increased robustness of constitutive models. Nevertheless, problems remain, especially for real world structures of softening materials like concrete. The softening gives negative stiffness and risk of bifurcations due to multiple cracks that compete to survive. Incremental-iterative techniques have difficulties in selecting and handling the local peaks and snap-backs. In this contribution, an alternative method is proposed. The softening diagram of negative slope is replaced by a saw-tooth diagram of positive slopes. The incremental-iterative Newton method is replaced by a series of linear analyses using a special scaling technique with subsequent stiffness/strength reduction per critical element. It is shown that this event-by-event strategy is robust and reliable. First, the model is shown to be objective with respect to mesh refinement. Next, the example of a large-scale dog-bone specimen in direct tension is analyzed using an isotropic version of the saw-tooth model. The model is capable of automatically providing the snap-back response. Subsequently, the saw-tooth model is extended to include anisotropy for fixed crack directions to accommodate both tensile cracking and compression strut action for reinforced concrete. Three different reinforced concrete structures are analyzed, a tension-pull specimen, a slender beam and a slab. In all cases, the model naturally provides the local peaks and snap-backs associated with the subsequent development of primary cracks starting from the rebar. The secant saw-tooth stiffness is always positive and the analysis always 'converges'. Bifurcations are prevented due to the scaling technique.

Structural and Property Changes in Glass-like Carbons Formed by Heat Treatment and Addition of Filler

  • Kim, Jangsoon;Kim, Myung-Soo;Hahm, Hyun-Sik;Lim, Yun-Soo
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.399-406
    • /
    • 2004
  • Glass-like carbon precursors shrink significantly during curing and carbonization, which leads to crack formation and bending. Cured furan resin powder and ethanol were added to furan resin to diminish the weight loss, to suppress the shrinkage and bending, and to readily release the gases evolved during polymerization and curing. Curing and carbonization were controlled by pressure and slow heating to avoid damage to the samples. The effect of the filler and ethanol on the fabrication process was examined by measuring the properties of the glass-like carbon, such as the specific gravity, bending strength, electrical resistivity, and microstructural change. The specific gravities of the filler-added glass-like carbons were higher than those of the ethanol-added samples because of the formation of macropores from the vaporization of ethanol during the curing and polymerization processes. Although the ethanol-added glass-like carbons exhibited lower bending strengths after carbonization than did the filler-added samples, the opposite result was observed after aging at 2,600$^{\circ}C$. We found that the macropores created from ethanol were contracted and removed upon heat treatment. The electrical resistivity of the glass-like carbon aged at 2,600$^{\circ}C$ was lower than those of the samples carbonized at 1,000$^{\circ}C$. We attribute this phenomenon to the fact that aging at high temperature led to well-developed microstructures, the removal of macropores, and the reduction of the surface area.

Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향 (Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy)

  • 이영재;강원국;어광준;조규상;이기안
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.350-352
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore fur its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

  • PDF

산업부산물을 혼합하여 제작한 3성분계 시멘트 콘크리트의 성능 평가 (Evaluation on the Properties of Ternary blended Cement Concrete using Industrial Byproducts)

  • 김춘호;김남욱
    • 자원리싸이클링
    • /
    • 제23권3호
    • /
    • pp.13-20
    • /
    • 2014
  • 현재 산업 및 토목기술의 발전으로 인한 콘크리트 구조물의 대형화 및 다양화가 시도되고 있으나 대형 구조물의 시공 시 발생하는 수화열은 온도균열을 유발하여 콘크리트 구조물의 내구성능을 저하시키는 문제를 발생한다. 본 논문은 시멘트의 종류에 따른 콘크리트의 내구성능 및 수화열 저감 특성을 고찰하기 위하여 보통포틀랜드시멘트, 플라이애쉬를 혼합한 2성분계 시멘트, 플라이애쉬와 고로슬래그를 혼합한 3성분계 시멘트 및 저발열 시멘트를 각 각 사용하여 제작한 콘크리트의 물성, 내구성능 및 수화특성 등의 결과를 비교 분석한 결과, 3성분계 혼합 시멘트가 내구성능 및 수화열 저감 효과에 가장 우수한 것으로 나타나 매스 콘크리트 및 내구성능이 요구되는 구조물 축조에 적합하다고 판단되었다.