• 제목/요약/키워드: Crack Orientation

검색결과 154건 처리시간 0.027초

탄소섬유/에폭시 복합재료의 층간파괴인성에 미치는 균열진전각도의 영향 (Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials)

  • 황진호;황운봉
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.1026-1038
    • /
    • 1999
  • Interlaminar fracture toughness of carbon/epoxy composite materials has been studied under tensile and flexural loading by the use of width tapered double cantilever beam(WTDCB) and end notched flexure(ENF) specimens. This study has significantly examined the effect of various interfacial ply orientation, ${\alpha}(0^{\circ},\;45^{\circ}\;and\;90^{\circ})$ and crack propagation direction, ${\theta}(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ in terms of critical strain energy release rate through experiments. Twelve differently layered laminates were investigated. The data reduction for evaluating the fracture energy is based on compliance method and beam theory. Beam theory is used to analyze the effect of crack propagation direction. The geometry and lay-up sequence of specimens are considered various conditions such as skewness parameter, beam volume, and so on. The results show that the fiber bridging occurred due to the non-midplane crack propagation and causes the difference of fracture energy evaluated by both methods. For safer and more reliable composite structures, we obtain the optimal stacking sequence from initial fracture energy in each mode.

초기 균열길이 및 섬유방향이 CFRP/GFRP 하이브리드 적층재의 층간 파괴에 미치는 영향 (The Effects of the Initial Crack Length and Fiber Orientation on the Interlaminar Delamination of the CFRP/GFRP Hybrid Laminate)

  • 권오헌;권우덕;강지웅
    • 한국안전학회지
    • /
    • 제28권1호
    • /
    • pp.12-17
    • /
    • 2013
  • Considering the wind power system and the rotor blades which are composed of much technology, the wind power blade would be the most dangerous part because it revolves at high speed and weighs about dozens of tons, if the accident happens. Therefore, the light weight composite materials have been replacing as substitutional materials. The object of this study is to examine the delamination and damage for CFRP/GFRP hybrid composite that is used for strength improvement of a wind power blade. The influence of the initial crack length and fiber orientation for the interlaminar delamination was exposed for the blade safety. Plain woven CFRP instead of GFRP was inserted into the layer of the box spar for improving the strength and blade life. DCB(Double Cantilever Beam) specimen was used for evaluating fracture toughness and damage evaluation of interlaminar delamination. The material used in the experiment is a commercial material known as CF 3327 EPC in plain woven carbon prepreg(Hankuk Carbon Co.) and UD glass fiber prepreg(Hyundai Fiber Co.). From the results, crack growth rate is not so different according to the variation of the initial crack length. Mode I interlamainar fracture toughness of fiber direction $0^{\circ}$ is higher than that of $45^{\circ}$. Interlaminar fracture has an effect on fiber direction and K decreased with lower value according to increasing initial crack length. Also energy release rate fracture toughness was evaluated because CFRP/GFRP hybrid composite with a different thickness is under the mixed mode loading condition. The interlaminar fracture was almost governed by mode I fracture even though the mixed mode.

탄소섬유/에폭시 복합재료의 Mode I 층간파괴거동에 미치는 섬유배향각의 영향에 관한 연구 (A Study on the Influence of Fiber Orientation on the Mode I Interlaminar Fracture Behavior of Carbon/Epoxy Composite materials)

  • 이택순;최영근
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.391-401
    • /
    • 1995
  • Several tests of the Double Cantilever Beam(DCB) were carried out for influence of the fiber orientation on the Mode I of the interlaminar fracture behavior in the Carbon/Epoxy composites. The interlaminar fracture toughness of Mode I was estimated based on the energy release rate of Mode I, $G_{I}$. The fracture toughness at crack initiation, $G_{IC}$, increases from type A to type E. The fracture toughness, $G_{IR}$ , is almost constant macroscopically for type A and type E when crack propagates. $G_{IR}$ for types B, C, D increases rapidly at the beginning of the crack growth then it decreases gradually. The fracture surface observation by SEM was also obtained the same results. Consequently the influence of the fiber orientation on the Mode I Interlaminar fracture behavior was made clear.ear.

집중하중을 받는 일방향 섬유 금속 적층판의 손상 거동 (Damage Behavior of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions)

  • 남현욱;김용환;정성욱;정창규;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.407-412
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subject to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, Acoustic Emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. Cumulative AE counts were well predicted crack initiation and crack propagation and AE amplitude were useful for prediction of damage failure mode. During the matrix cracking, fiber debonding and fiber breakage, AE amplitude has $45{\sim}60dB,\;60{\sim}80dB\;and\;90{\sim}100dB$, respectively.

  • PDF

균열선단 특이요소를 이용한 직교이방성판의 응력확대계수 결정에 관한 연구 (A Study on Determination of Stress Intensity Factor of Orthotropic Plates Using Crack Tip Singular Element)

  • 진치섭;최현태;이홍주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.124-128
    • /
    • 1991
  • Wood, laminates, reinforced concrete, and some special types of metals systems with controlled grain orientation are often orthotropic and at least rectilinearly anisotropic from point to point, if regarded as homogeneous media. Orthotropic bodies where a crack is not associated with a plane of elastic symmetry may be conveniently treated as a crack problem in a generally anisotropic body. At this work, approach for the determination of the stress intensity factors (SIF) of anisotropic body using crack tip singular elements is presented. Caculated values are in good agreement with the others.

  • PDF

Low Cycle Fatigue of PPS Polymer Injection Welds ( II ) - Fiber Orientation and Fracture Mechanism -

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.836-843
    • /
    • 2003
  • The polymer composites contain numerous internal boundaries and its structural elements have different responses and different resistances under the same service environment. Fatigue phenomenon is much more complex in composites than homogeneous materials. An understanding of the fracture behavior of polymer composite materials subjected to constant and cyclic loading is necessary for predicting the life time of structures fabricated with polymers. There is a need to acquire a better understanding of the fatigue performance and failure mechanisms of composites under such conditions. Therefore, in this study the analyses of fiber orientation and fracture mechanism for low cycle fatigue crack have been studied by SEM and LM for observing the ultrathin sections.

조향 자기변형 트랜스듀서를 이용한 평판 결함진단 (Damage Detection in a Plate Using an Orientation-adjustable Magnetostrictive Transducer)

  • 조승현;이주승;선경호;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.81-86
    • /
    • 2005
  • In this work, we propose a new ultrasonic damage inspection method in plate structures. The proposed method employs an OPMT(orientation-adjustable patch-type magnetostrictive transducer) in order to make the ultrasonic waves directed to a specific target point. For experiments, virtual grid points were set up at every 50 mm in an aluminum plate and two OPMTs were used for inspection. If there exists a crack in a plate, the reflected Lamb wave from the crack is measured in addition to the direct waves from the transmitting transducer to the receiving transducer.

CED에 의한 계면굴절균열의 진전거동평가 (The Evaluation of the Kinked Interface Crack Behavior in Dissimilar Materials by CED)

  • 권오헌
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.414-422
    • /
    • 1997
  • The characteristics on the extension of the CED(Crack Energy Density) concept to the interface kinked crack problems in a dissimilar are examined. Each mode contributions of CED are found by symmetric and antisymmetric conponents and domain independent integrals. Finite element calculation is carried out to simulate the interface kinked crack growth on a bimaterial. The focus is the establishment of fracture criterion with CED and finding the orientation of crack extension. From the results, a prediction about the extension behavior of an interface kinked crack can be done. And we show that CED can be a parameter to indicate fracture criterion at an interface kinked crack.

프레팅 피로 균열의 발생 위치 및 방향 예측 (Prediction of Initiation Location and Direction of Fretting Fatigue Crack)

  • 허용학
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1185-1192
    • /
    • 2003
  • Governing parameters for determination of the location of crack initiation and direction of crack initiation were investigated by performing fretting fatigue tests and analysis on Al 2024-T351. Fatigue tests were carried out using biaxial fatigue machine. It was shown that the dominant fatigue crack tended to initiate at the outer edge of one of the four bridge pads, growing at an angle beneath a pad, before turning perpendicular to the orientation of the axial load. Distribution of stresses generated during fretting fatigue loading along the interface was calculated by elastic FE simulation. It can be known that the location of crack initiation can be predicted by using the maximum tangential stress range. Futhermore, the crack initiation direction can also be predicted by a maximum tangential stress range.

콘크리트 터널 라이닝 균열검사 시스템 개발에 관한 연구 (Development of Inspection System for Crack on the Lining of Concrete Tunnel)

  • 고봉수;손영갑;신동익;김병화;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.66-72
    • /
    • 2004
  • To assess tunnel safety, cracks in tunnel lining are measured by inspectors, who observe cracks with their naked eyes and record them. But manual inspection is slow, and measured crack data is subjective. Therefore, this study proposes inspection system fur measuring cracks in tunnel lining and providing objective crack data to be used in safety assessment. The system consists of On-vehicle system and Laboratory system. On-Vehicle system acquires image data with line CCD camera on scanning along the tunnel lining. Laboratory system extracts crack information from the acquired image using image processing. Measured crack information is crack thickness, length and orientation. To improve accuracy of crack recognition, the geometric properties and patterns of cracks in concrete structure were applied to image processing. The proposed system was verified with experiments in both laboratory environment and field environment such as subway tunnel.