• Title/Summary/Keyword: Crack Opening Behavior

Search Result 165, Processing Time 0.02 seconds

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

A study on the crack initiation of SCM 4 (SCM4 의 크랙開始点 에 관한 硏究)

  • 옹장우;박찬국;김재훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.135-139
    • /
    • 1985
  • A J$_{IC}$ test procedure by ultrasonic method performed to observe the crack opening behavior of fatigue precrack and detect the initiation of crack propagation of compact tension specimen in this paper. Pulse-echo method with 5 MHz transducer was used on the Cr-Mo steel quenched and tempered at 593.deg. C. We obtained the following results in the elastic-plastic fracture toughness test by ultrasonic method. Echo height is a little increased linearly and rapidly at the early stage of loading . Then it is decreased considerably, finally at the unstable crack growth stage, it is rapidly increased at an unpredictable rae. The initiation of crack propagation is supposed to be at the stage deviated from linearly decreased region and then blunted. J$_{IC}$ value(10.15-12.15 Kgf/mm) by ultrasonic method is lower than that(12.2 Kgf/mm) by R-curve method. But, it is required that the research for the more exact evaluation about correlation between echo height and the crack opening behavior of precrack tip will be continued. continued.ued.

An Analytical Modeling for Bridging Stress Function Involving Grain Size Distribution in a Polycrystalline Alumina (다결정 알루미나에서 결정립 크기 분포를 포함하는 Bridging 응력함수의 해석적 모델링)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1449-1458
    • /
    • 1994
  • A new analytical model which can discribe the relationship between the bridging stress and the crack opening displacement was proposed to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina. The crack opening displacement according to the distance behind the stationary crack tip was measured using in-situ fracture technique in an SEM, and then used for a fitting procedure to obtain the distribution of bridging stress. The current model and an empirical power law relation were introduced into the fitting procedure. The results indicated that the bridging stress function and R-curve computed by the current model were consistent with those computed by the power law relation. The microstructural factor, e.g., the distribution of grain size, was also found to be closely related to the bridging stress. Thus, this model explained well the interaction effect between the distribution of bridging stress and the local-fracture-controlling microstructure, providing important information for the systematic interpretation of microfracture mechanism including R-curve behavior of a monolithic alumina.

  • PDF

Determination and Applications of U and K$_{op}$ for Crack Closure Evaluation under Mixed-mode loading (혼합모드 하중 하에서 균열닫힘 평가에 대한 K$_{op}$와 U의 결정과 적용)

  • Song Samhong;Seo Kijeong;Lee Jeongmoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.178-185
    • /
    • 2005
  • Crack tip displacement is originated by tensile stress component, s and shear stress component, t on pure Mode I and pure Mode II. The crack tip displacement(CTD) depends on combined types of different two stress components under mixed-mode loading conditions (MMLC). Thus, the analysis of crack tip displacement must be CTD vector, dv which is composition of ds and dt under MMLC. In this paper, various effects of MMLC on the crack closure are studied experimentally. The crack closure magnitude is calculated from the information of crack tip displacement under MMLC. This information has been obtained from the high resolution optical microscope in direct observations of crack displacement behavior at the crack tip. Observed crack tip displacement is analyzed by using CTD vector to determine crack opening load. The various effects of MMLC on the crack closure are explained using crack opening ratio with crack length and mode mixture. The effective stress intensity factor considering crack closure is also discussed.

Behavior of Initiation and Propagation of Fatigue Crack under Periodic Overstressing(II) - About the Inside Crack of the Caron Steel- (過大, 過小應力下에서의 疲勞크랙發생 傳播擧動 (II) - 탄소동재의 내부크랙을 중심으로-)

  • 송삼홍;원시태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.188-197
    • /
    • 1986
  • With respect to structural carbon steel(SM 22C), it was studied how the overstress or the understress has effects on fatigue inside crack propagation curve of a two level stress. Obtained results are summarized as follows. (1) The overstress or the understress, at a slip band occurrence stage, does not change the inside crack propagation curve because the crack closure and opening phenomena do not happen. (2) The overstress, at a crack propagation stage, does not change the inside crack propagation curve because the crack closure of overstress in compressive state is nearly same that of base stress in compressive state. (3) The understress, at a crack propagation stage, give rise to an acceleration of crack growth because the crack closure of understree in compressive state is more open than that of base stress in compressive state and the phenomenon is the essential increase of the actual applied stress of the specimen.

Effect of Residual Stress on Fatigue Characteristics at the Welds of Stainless Steel (스테인리스강 용접부의 잔류응력이 피로특성에 미치는 영향)

  • 권종완;양현태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.110-117
    • /
    • 2001
  • In the weldments, the crack propagation rate is changed due to the residual stress. The crack propagation rate is high in the region with the residual stress. However it shows the same behavior with the base metal in the region that does not include the residual stress. The fatigue crack growth rate for the material with residual stresses can be predicted more precisely by using the effective stress ratio. The difference between experimental results and prediction results seems to be due to the redistribution of the residual stresses and microstructural change.

  • PDF

A Study on the Microscopic Model for Fatigue Crack Closure Behavior (피로균열 개폐구거동의 미시적 모델에 관한 연구)

  • O, Se-Uk;Gang, Sang-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.81-87
    • /
    • 1990
  • Fatigue crack closure levels based on the behavior of residual displacements on crack surfaces, are determined analytically according to the microscopic crack closure mechanisms, i.e., whether the first contact of crack surfaces takes place at the very crack tip or on the surfaces near the tip. The comparative analysis on the two models is carried out empirically by the constant amplitude fatigue tests on 2024-T3 aluminum alloy plate, and it shows that under negative stress ratio, the case of the first contact at crack tip gives better agreement with the experimental results than the other.

  • PDF

A Study on the Microscopic Model for Fatigue Crack Closure Behavior (피로균열 개폐구거동의 미시적 모델에 관한 연구)

  • O, Se-Uk;Gang, Sang-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.87-87
    • /
    • 1990
  • Fatigue crack closure levels based on the behavior of residual displacements on crack surfaces, are determined analytically according to the microscopic crack closure mechanisms, i.e., whether the first contact of crack surfaces takes place at the very crack tip or on the surfaces near the tip. The comparative analysis on the two models is carried out empirically by the constant amplitude fatigue tests on 2024-T3 aluminum alloy plate, and it shows that under negative stress ratio, the case of the first contact at crack tip gives better agreement with the experimental results than the other.

Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF