• 제목/요약/키워드: Crack Measurement Method

검색결과 228건 처리시간 0.032초

FRC의 휨인성 평가시 외부변형과 불안정성의 영향 및 처리방안 (The Influence and Treatment Method of Extraneous Deformation & Unstability on the Flexural Toughness of FRC)

  • 김경수;김남욱;임정환;배주성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권3호
    • /
    • pp.119-128
    • /
    • 2002
  • This study discusses the issues related to the accuracy of deflection measurement and unstable energy in the testing of FRC. Some deflection methods may include large extraneous deformations. A faulty load-deflection curve will be obtained if an unstable deflection measuring system is used, and inaccurate toughness evaluation can result from this faulty curve. Some load-deflection curve of FRC may be attributed to unstable region of the load-deflection curve. If the unstable region is not correctly evaluated toughness indices from the curve would inappropriately represent true indices. In this paper, the discussion will focus on the effects of the deflection measuring system both on the measurement of the load-deflection response of FRC and the evaluation of FRC toughness and the effects of the unstable region and the management method of unstable region on toughness evaluation of FRC. It is observed that ASTM toughness indices which is based on measured deflection at first cracking is influenced significantly by extraneous deformation of deflection measurement. Extraneous deformation in deflection measurement, however result in negligible errors in toughness evaluation if JSCE and JCI definitions are used.

철도터널 라이닝에 대한 손상도 파악기법의 현장적용 (An application of damage detection technique to the railway tunnel lining)

  • 방춘석;이준석;최일윤;이희업;김연태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1142-1147
    • /
    • 2004
  • In this study, two damage detection techniques are applied to the railway tunnel liner based on the static deformation data. Models based on uniform reduction of stiffness and smeared crack concept are both employed, and the efficiency and relative advantage are compared with each other. Numerical analyses are performed on the idealized tunnel structure and the effect of white noise, common in most measurement data, is also investigated to better understand the suitability of the proposed models. As a result, model 1 based on uniform stiffness reduction method is shown to be relatively insensitive to the noise, while model 2 with the smeared crack concept is proven to be easily applied to the field situation since the effect of stiffness reduction is rather small. Finally, real deformation data of a rail tunnel in which health monitoring system is in operation are introduced to find the possible damage and it is shown that the prediction shows quite satisfactory result.

  • PDF

기계기초 매스콘크리트의 균열제어를 위한 온도관리 (A Temperature Management of Mass Concrete for Crack Control in Machine Foundation)

  • 허택녕;이제방;손영현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.394-401
    • /
    • 1996
  • This paper persents the crack control of mass concrete in massive machine foundation. The dimension of the machine foundation is 52.6m$\times$14.4m$\times$8.5m. The one distinctive characteristic of mass concrete is thermal behavior. Since the cement-water reaction is exothermic by nature, the temperature rises inside the massive concrete structure. When the heat is not quickly dissipated, it can be quite high. Significant tensile stresses may develop from the volume change associated with the increase of decrease of temperature within the mass concrete structure. To avoid occurrence of harmful cracks due to hydration heat, special attention shall be given to the construction of mass cnocrete structures. The temperature control system of mass concrete is proposed in this paper. This system contains a discussion of materials and concrete mix proportioning, thermal analysis, curing method, temperature control, and measurement of hydration heat. As will be seen throughout the paper, the proposed temperature control system have a great effect on the temperature-related cracks on mass concrete structures.

  • PDF

컴플라이언스법에 의한 다층 맞대기 이음의 잔류응력 추정 (Residual Stress Prediction in Multi-layer Butt Weld Using Crack Compliance Method)

  • 김유일;이장현
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.74-79
    • /
    • 2012
  • It depends on the joint configuration, dimensions and constraints of the joint whether the residual stress at the root of single-sided butt weld is tensile or not. Therefore, recommendation is generally made that high R ratio should be used in the fatigue test of welded joint in order to prevent excessively long life caused by compressive residual stress. In this research, the residual stress profile in butt weld joint was obtained through compliance method, using successive extension of a slot and measurement of the variation of strain during the slot extension. The residual stress profile was firstly assumed to be the linear summation of Legendre polynomials up to 9th order excluding 0th and 1st order. Strain variation on the surface was measured while the slot was being extended by cutting to find out the 8 unknown coefficients of each polynomial term. The cut was made by the electric discharge machine. It was concluded that the residual stress near the surface is positive valued, however, it turned into the negative value as soon as it passed through 2 or 3 mm of the depth.

직류전위차법을 이용한 AISI 316강 시효재의 탄소성 파괴인성 평가 (Evaluation of Elastic-Plastic Fracture Toughness of Aged AISI 316 Steel Using DC-electric Potential Method)

  • 임재규;장진상
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.519-527
    • /
    • 1997
  • AISI 316 steel has been used extensively for heater and boiler tube of the structural plants such as power, chemical and petroleum plants under severe operating conditions. Usually, material degradation due to microcrack or precipitation of carbides and segregation of impurity elements, is occured by damage accumulated for long-term service at high temperature in this material. In this study, the effect of aging time on fracture toughness was investigated to evaluate the measurement of material degradation. The elastic-plastic fracture toughness behaviour of AISI 316 steel pipe aged at $550^{\circ}C$for 1h-10000h (the aged material) was characterized using the single specimen J-R curve technique and eletric potential drop method at normal loading rate(load-line displacement speed of 0.2mm/min) in room temperature and air environment. The fracture toughness data from above experiments is compared with the $J_{in}$ obtained from predicted values of crack initiation point using potential drop method.

Application of principal component analysis and wavelet transform to fatigue crack detection in waveguides

  • Cammarata, Marcello;Rizzo, Piervincenzo;Dutta, Debaditya;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제6권4호
    • /
    • pp.349-362
    • /
    • 2010
  • Ultrasonic Guided Waves (UGWs) are a useful tool in structural health monitoring (SHM) applications that can benefit from built-in transduction, moderately large inspection ranges and high sensitivity to small flaws. This paper describes a SHM method based on UGWs, discrete wavelet transform (DWT), and principal component analysis (PCA) able to detect and quantify the onset and propagation of fatigue cracks in structural waveguides. The method combines the advantages of guided wave signals processed through the DWT with the outcomes of selecting defect-sensitive features to perform a multivariate diagnosis of damage. This diagnosis is based on the PCA. The framework presented in this paper is applied to the detection of fatigue cracks in a steel beam. The probing hardware consists of a PXI platform that controls the generation and measurement of the ultrasonic signals by means of piezoelectric transducers made of Lead Zirconate Titanate. Although the approach is demonstrated in a beam test, it is argued that the proposed method is general and applicable to any structure that can sustain the propagation of UGWs.

손상이 있는 복합적층판의 충격거동 해석 (Impact Behavior Analysis on Composite Laminate with Damages)

  • 김성준;홍창호
    • 한국항공우주학회지
    • /
    • 제38권1호
    • /
    • pp.22-28
    • /
    • 2010
  • 복합재 구조물의 손상을 탐지하기위해 비파괴 검사법이 폭넓게 사용되고 있다. 태핑시험은 복합적층판의 손상을 탐지하는데 가장 일반적으로 사용하는 방법이다. 이 방법은 가벼운 해머 같은 장치를 이용하여 검사부위를 두드리고, 국부적인 강성변화를 이용하여 구조물의 손상을 평가한다. 진동신호의 변화는 동적인 접촉하중을 측정하여 탐지할 수 있다. 본 연구에서는 구조물에 층간분리나 표면균열 등의 손상이 존재하는 경우 태핑 시 충격하중이력의 특성이 변하는 것을 보였다. 그리고 손상의 영향을 검토하기위해 균열이 있는 복합재 로터블레이드에 대한 충격해석을 수행하였다.

PWR환경에서 CF8M, CF8A 배관재의 부식피로특성 연구 (Corrosion Fatigue Characteristics of CF8M and CF8A on the PWR Condition)

  • 정일석;이용성;김상재;송택호;조선영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1062-1067
    • /
    • 2003
  • In this study, corrosion fatigue characteristics of CF8M and CF8A steel were investigated on the simulated PWR condition(Temp.:$316^{\circ}C$, Pres.: 15:MPa). To make the simulated PWR condition. the special test machine consisted of INSTRON, Autoclave, LOOP and Measurement system was developed. As ${\Delta}K$ is ranged from 11 to $20MPa{\sqrt{m}}$, Crack growth rate of PWR condition is faster than air condition. Above $20MPa{\sqrt{m}}$, the crack growth rate of PWR and air condition is similar. Corrosion fatigue characteristics regardless of the ferrite contents($10{\sim}25wt.%$) is not different. After the test, the fracture surface of specimens was examined. It was difficult to verify the fracture modes such as striation, intergranular crack and cleavage and so on. As the ferrite content of CF8M is increased, the more particles covered fracture surface were peeled.

  • PDF

X-선 회절을 이용한 피로하중을 받는 일반구조용강의 잔류응력에 관한 연구 (A Study on Residual Stress for Fatigue Fracture Surface in General Purpose Structural Steel using X-ray Diffraction)

  • 조석수;장득열;주원식
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.248-261
    • /
    • 1999
  • The fatigue life of mechanical components and structures has been influenced by mechanical, material and environmental conditions. It is important to search out the load type and size for accurate cause of fracture at the damaged surface of material. The fractographic method by x-ray diffraction can utilize residual stress $\sigma$_r and half-value breadth B and find out the types and the mechanical conditions of fracture. This study showed the relationship between fracture mechanical parameters $\Delta$K, $K_{max}$ and X-ray residual stress $\sigma$_r for normalized SS41 steel with homogeneous crystal structure and M.E.F. dual phase steel(martensite encapsulated islands of ferrite). The fatigue crack propagation tests were carried out under stress ratios 0.1 and 0.5. The x-ray diffraction technique according to crack propatation direction was applied to fatigue fractured surface. Residual stress $\sigma$_r was independent on stress ratios by arrangement of $\Delta$K. The equation of $\sigma$_r$\Delta$K was established by the experimental data. Therefore, fracture mechanical parameters can be estimated can be estimated by the measurement of X-ray parameters.

  • PDF

강철도교의 피로평가시스템 개발 (Development of Fatigue Assesement System for Steel Railway Bridge)

  • 경갑수;최일윤;이준석;이준호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1046-1051
    • /
    • 2004
  • As a method to execute efficient maintenance of steel railway bridge, in this paper, program for fatigue assessments of structural member of steel railway bridge were developed. This program is composed with 3 unit module program which variable stress analysis, fatigue assessment and fatigue crack propagation. The validity of developed program was verified from evaluating the result of filed measurement and program output.

  • PDF