• Title/Summary/Keyword: Crack Integrity Evaluation

Search Result 124, Processing Time 0.021 seconds

Effect of Finite Element Model on the Integrity Evaluation of Nuclear Piping (유한요소 해석모델이 원자력 배관의 건전성 평가에 미치는 영향)

  • Huh, Nam-Su;Kim, Young-Jin;Pyo, Chang-Ryul;Yu, Young-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.51-58
    • /
    • 2000
  • Recently, the J/T analysis based on elastic-plastic finite element analysis is popularly used in the nuclear industry to assess the integrity of a cracked pipe. The objective of this paper is to evaluate the effect of stress-strain curve for weld metal, variation of crack incremental length(${\delta}a$), and crack face pressure on the J/T analysis result. For this purpose, a parametric analysis was performed and the results calculated from finite element analysis were compared with those from the piping experimental data(stainless steel weldment pipe with circumferential through-wall crack). The numerical result using base metal material property is in agreement with the experimental one and the maximum load is decreased as the ${\delta}a$ for J/T analysis is increased.

  • PDF

Structural Integrity Evaluation of the Integral Reactor SMART under Pressurized Thermal Shock (가압열충격에 대한 일체형원자로 SMART의 구조건전성 평가)

  • Kim, Jong-Wook;Lee, Gyu-Mahn;Choi, Suhn;Park, Keun-Bae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.441-446
    • /
    • 2001
  • In the integral type reactor, SMART, all the major components such as steam generators, pressurizer and pumps are located inside the single reactor pressure vessel. The objective of this study is to evaluate the structural integrity for RPV of SMART under the postulated pressurized thermal shock by applying the finite element analysis. Input data for the finite element analysis were generated using the commercial code I-DEAS, and the fracture mechanics analysis was performed using the ABAQUS. The crack configurations, the crack aspect ratio and the clad thickness were considered in the parametric study. The effects of these parameters on the reference nil-ductility transition temperature were also investigated.

  • PDF

Failure Probability Evaluation of Pressure Tube using the Probabilistic Fracture Mechanics (확률론적 파괴역학 기법을 이용한 압력관의 파손확률 평가)

  • Son, Jong-Dong;Oh, Dong-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.7-12
    • /
    • 2007
  • In order to evaluate the integrity of Zr-2.5Nb pressure tubes, probabilistic fracture mechanics(PFM) approach was employed. Failure assessment diagram(FAD), plastic collapses, and critical crack lengths(CCL) were used for evaluating the failure probability as failure criteria. The Kr-FAD as failure assessment diagram was used because fracture of pressure tubes occurred in brittle manner due to hydrogen embrittlement of material by deuterium fluence. The probabilistic integrity evaluation observed AECL procedures and used fracture toughness parameters of EPRI and recently announced theory. In conclusion, the probabilistic approach using the Kr-FAD made it possible to determine major failure criterion in the pressure tube integrity evaluation.

Integrity Evaluation of Bogie Frame by Ultrasonic Fractography Analysis (초음파 파면해석에 의한 대차 프레임의 건전성 평가)

  • 윤인식;권성태;선종성;명노종;정우현;손태순;김경국;김순철
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.77-83
    • /
    • 2000
  • This study proposes the integrity evaluation of the bogie frame using ultrasonic fractography analysis. Analysis objectives in this study are to investigate fracture planes of damaged zone by the A-scan method. The surface condition of fracture planes shows degree of degradation by the stress concentration. The detection of the natural defects in the bogie frame is performed using the characteristics of echodynamic pattern in ultrasonic signal. Results of ultrasonic testing agree fairly well with those of actual fracture plane. In quantitative fractography analysis, microstructures of actual fracture plane turned out to be intergranular and transgranular fracture. Proposed ultrasonic fractography analysis in this study can be used for the integrity evaluation of the bogie frame.

  • PDF

Experimental Evaluation Study on the Integrity of Plastic Shell Structure using Acoustic Emission Technique (음향방출기법을 응용한 플라스틱 쉘 구조물의 건전성 평가 연구)

  • Shul, Chang-Won;Lee, Kee-Bhum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.39-47
    • /
    • 2005
  • An acoustic emission technique is applied to the tensile tests of the plastic specimen under the different test speeds and the structural integrity evaluation of the plastic shell structure. Several AE characteristics are acquired from the tensile tests and they are proven to be useful parameters in evaluating its structural integrity. The results shows that tensile strength has almost constant value over some higher speed region while revealing some increasing tendency in strength as the test speeds up in lower speed region. The crack initiation loads and locations are accurately evaluated during the static compression testing of the plastic shell structures by using acoustic emission technique.

The Effect of High Velocity Oxygen Fuel Thermal Spray Coating on Fatigue Crack Growth Behavior for Welded SM490B (SM490B 용접부의 피로균열 성장 거동에 미치는 초고속 용사코팅 효과)

  • Yoon, Myung-Jin;Choi, Sung-Jong;Cho, Won-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.99-106
    • /
    • 2006
  • High velocity oxygen-fuel thermal spray coating of the WC-Co cermet material is a well-established process for modifying the surface properties of the structural components exposed to the corrosive and wear attacks, and also these coating are well-known method to improve the fatigue strength of material. In this study, HVOF coated SM490B are prepared to evaluation of the effect of coating on tension and fatigue crack growth behavior. The pre-crack of the fatigue crack growth test specimens machined at deposited material area, heat affected zone and boundary, respectively. Through these test, the following results are obtained: 1) Tensile strength was about 498 MPa, and fracture occurred on base metal area. 2) The fatigue crack of coated specimens propagated more rapidly than non-coated specimen in all specimens. 3) In the same coating thickness specimens, the specimens with pre-crack at boundary more rapidly propagated than the specimens with pre-crack at HAZ and deposited material area. These results can be used as basic data in a structural integrity evaluation of rolled SM490B weldments considering HVOF coating.

The Evaluation of Fretting Fatigue Behavior on Rotary Bending Fatigue for Railway Axle Material (회전굽힘 피로 하에서의 철도 차축재료 프레팅 피로거동 평가)

  • Choi, Sung-Jong;Kwon, Jong-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.74-82
    • /
    • 2010
  • Fretting damage can be observed in automobile and railway vehicle, fossil and nuclear power plant, aircraft etc. In the present study, railway axle material RSA1 used for evaluation of fretting fatigue life. Plain and fretting fatigue tests were carried out using rotary bending fatigue tester with proving ring and bridge type contact pad. Through these test, the following results are obtained: 1) it is found that the fretting fatigue limit of standard specimen decreased about 37% compared to the plain fatigue limit. 2) The early crack of Shinkansen type specimens initiated in contact area and final fractured below samp=214 MPa. 3) The early crack of all TGV type specimens initiated in rounded area and fractured. 4) Tire tracks and rubbed scars were observed in the oblique crack region and fatigue crack growth region of fracture surface. 5) The wear debris is observed on the contact surface, and oblique cracks at an earlier stage are initiated in contact area. These results can be used as useful data in a structural integrity evaluation of railway axle.

Probabilistic Evaluation Methodology for Nuclear Components (원전 주요기기의 확률론적 평가 기법)

  • Lee, Joon-Seong;Kwak, Sang-Log;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.459-464
    • /
    • 2001
  • For major nuclear power plant components periodic inspections and integrity assessments are needed for the safety. But many flaws are undetectable due to sampling inspection. Probabilistic integrity assessment is applied to take into consideration of uncertainty and variance of input parameters arise due to material properties, applied load and undetectable flaws. This paper describes a Probabilistic Fracture Mechanics(PFM) analysis based on Monte Carlo(MC) algorithms. Taking important parameters as probabilistic variables such as fracture toughness, crack growth rate and flaw shape, failure probability of major nuclear power plant components is archived as a results of MC simulation. For the verification of these analysis, a comparison study of the PFM analysis using other commercial code, mathematical method is carried out and a good agreement was observed between those results.

  • PDF

Stress Intensity Factors for Axial Cracks in CANDU Reactor Pressure Tubes (CANDU형 원전 압력관에 존재하는 축방향 균열의 응력확대계수)

  • Lee, Kuk-Hee;Oh, Young-Jin;Park, Heung-Bae;Chung, Han-Sub;Chung, Ha-Joo;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • CANDU reactor core is composed a few hundreds pressure tubes, which support and locate the nuclear fuels in the reactor. Each pressure tube provides pressure boundary and flow path of primary heat transport system in the core region. In order to guarantee the structural integrity of pressure tube flaws which can be found by in-service inspection, crack growth and fracture initiation assessment have to be performed. Stress intensity factors are important and basic information for structural integrity assessment of planar and laminar flaws (e. g. crack). This paper reviews and confirms the stress intensity factor of axial crack, proposed in CSA N285.8-05, which is an fitness-for-service evaluation code for pressure tubes in CANDU nuclear reactors. The stress intensity factors in CSA N285.8-05 were compared with stress intensity factors calculated by three methods (finite element results, API 579-1/ASME FFS-1 2007 Fitness-For-Service and ASME Boiler and Pressure Vessel Code Section XI). The effects of Poisson's ratio and anisotropic elastic modulus on stress intensity factors were also discussed.

Coalescence Pressure of Steam Generator Tubes with Two Different-Sized Collinear Axial Through-Wall Clacks (길이가 다른 두 개의 축방향 관통균열이 동일선상에 존재하는 증기발생기 세관의 균열 합체 압력)

  • Huh Nam-Su;Chang Yoon-Suk;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1255-1260
    • /
    • 2006
  • To maintain the structural integrity of steam generator tubes, 40% of wall thickness plugging criterion has been developed. The approach is for the steam generator tube with single crack, so that the interaction effect of multiple cracks can not be considered. Although, recently, several approaches have been proposed to assess the integrity of steam generator tube with two identical cracks whilst actual multiple cracks reveal more complex shape. In this paper, the coalescence pressure of steam generator tube containing multiple cracks of different length is evaluated based on the detailed 3-dimensional (3-D) elastic-plastic finite element (FE) analyses. In terms of the crack shape, two collinear axial through-wall cracks with different length were considered. Furthermore, the resulting FE coalescence pressures are compared with FE coalescence pressures and experimental results for two identical collinear axial through-wall cracks to quantify the effect of crack length ratio on failure behavior of steam generator tube with multiple cracks. Finally, based on 3-D FE results, the coalescence evaluation diagrams were proposed.