• Title/Summary/Keyword: Crack Energy Consumption Rate

Search Result 7, Processing Time 0.019 seconds

Evaluation of Delamination for Fiber Reinforced Metal Laminates Using a Pseudo Crack Model (가균열 모델을 이용한 섬유강화 금속적층재의 층간분리 평가법)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2004
  • If Fiber Reinforced Metal Laminates(FRMLs) were delaminated, the decrease of stiffness and fiber bridging effect would result in the sudden aggravation of fatigue characteristics. It was reported that the delamination of FRMLs resulted from the crack of metal layers and that it depended on the crack growth. While cracks were made in FRMLs containing a saw-cuts under fatigue loading, cracks could be produced or not in FRMLs with circular holes under the same condition. When the FRMLs with the circular holes produce not the crack but the delamination, it is not possible to analyze it by the conventional fracture parameters expressed as the function of the crack. And so, this research suggests a new analytical model of the delamination to make the comparison of the delamination behavior possible whenever the cracks occur or not. Therefore, a new analytical model called Pseudo Crack Model(PCM) was suggested to compare the delaminations whether cracks were made or not. The relationship between the crack energy consumption rate( $E_{crack}$) and the delamination energy consumption rate( $E_{del}$) was discussed and it was also known that the effect of $E_{del}$ was larger than that of $E_{crack}$.

Development of a Rice Circulating Concurrent-flow Dryer(III) - Performance Evaluation of 12-ton Capacity Dryer - (순환식 병류형 곡물건조기 개발(III) - 12톤 용량 건조기 성능평가 -)

  • Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.358-362
    • /
    • 2009
  • This study was conducted to evaluate the performance of a 12 tons capacity circulating concurrent flow rice dryer. An actual scale dryer with the capacity of 12 tons was developed to obtain a faster drying rate of 0.8~1.2%(w.b.)/h, while maintaining a lower drying energy consumption of 5,000 kJ/kg-water and achieving a drying quality that was comparable to a conventional cross-flow rice dryer. The Test-1 was conducted at $110^{\circ}C\;-\;20\;cmm/m^2$ and the Test-2 was conducted at $120-110-100-90^{\circ}C\;-\;20\;cmm/m^2$ under the same conditions as Test-1. In Test-1, the drying rate, drying energy consumption and crack ratio were 0.98 %(w.b.)/h, 4,573 kJ/kg-water and 3.2%, respectively. In Test-2, the drying rate, drying energy consumption and crack ratio were 0.74 %(w.b.)/h, 4,790 kJ/kg-water and 4.0%, respectively. The results of these tests demonstrated that this concurrent-flow dryer reached the desired drying rate, drying energy consumption and crack ratio.

Development of Automatic Rewetting System for Rough Rice Stored in Round Steel Bin with Stirring Device -Adsorption characteristics of rough rice- (원형철제빈용 벼 자동흡습장치 개발에 관한 연구(I) -벼의 흡습특성-)

  • Kim, J. Y.;Keum, D. H.;Kim, H.;Park, S. H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.469-474
    • /
    • 2001
  • Milling the rice with low moisture requires more energy, produces more cracked rice, and results in reducing taste of cooked rice. Accordingly, it is necessary to add moisture to the rice with low moisture to obtain optimum moisture level for milling and taste of rice. This study was performed to evaluate the influence of initial moisture content and absorption rate on rice crack, milling energy and whiteness of milled rice and to obtain the information for design of rewetting system mounted on stirring device in grain bin. The tests were conducted for the four levels of initial moisture content in the range of 11.4 to 14.5%(w.b.) and six levels of absorption rate in the range of 0.04 to 1.0%, w.b./hr. In the case of lower moisture content below 12%(w.b.), crack ratios of brown rice were remarkably high regardless of initial moisture contents. Therefore, it was found that rough rice below 12%(w.b.) in initial moisture content could not rewetted by spraying water without crack generation of low level. Absorption rate must be below 0.3%, w.b./hr to maintain crack ratio increase of less than 1% regardless of initial moisture contents. In the case of allowable crack ratio increase of 2% and 5%, it was found that the maximum absorprion rate was respectively 0.6%, w.b./hr and 1.0%, w.b./hr in the initial moisture content of above 13.5%(w.b.). Rewetting the rough rice in moisture content of 11.4 to 14.5%(w.b.) to 14.3 to 16.9%(w.b.) decreased milling energy consumption by 15.9 to 22.3%. The effect of energy saving was higher in the samples of higher initial moisture content. Whiteness of milled rice was decreased by 0.5 to 1.5.

  • PDF

Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics (구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용)

  • Kim, Kunhwi;Lim, Jihoon;Llim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.529-536
    • /
    • 2008
  • The failure behavior of structures is changed under different loading rates, which might arise from the rate dependency of materials. This phenomenon has been focused in the engineering fields. However, the failure mechanism is not fully understood yet, so that it is hard to be implemented in numerical simulations. In this study, the numerical experiments to a brittle material are simulated by the Molecular Dynamics (MD) for understanding the rate dependent failure behavior. The material specimen with a notch is modeled for the compact tension test simulation. Lennard-Jones potential is used to describe the properties of a brittle material. Several dynamic failure features under 6 different loading rates are achieved from the numerical experiments, where remarkable characteristics such as crack roughness, crack recession/arrest, and crack branching are observed during the crack propagation. These observations are interpreted by the energy inflow-consumption rates. This study will provides insight about the dynamic failure mechanism under different loading rates. In addition, the applicability of the MD to the macroscopic mechanics is estimated by simulating the previous experimental research.

Experimental investigation of interlaminar mechanical properties on carbon fiber stitched CFRP laminates

  • Iwahori, Yutaka;Ishikawa, Takashi;Watanabe, Naoyuki;Ito, Akira;Hayashi, Yoichi;Sugimoto, Sunao
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.95-113
    • /
    • 2007
  • Experimental investigations of interlaminar mechanical properties for carbon fiber reinforced plastic (CFRP) laminates were carried out using aramid fiber ($Kevlar^{(R)}$-29 1000d) and carbon fiber (TR40-1K 612d, Mitsubishi Rayon) stitching. Various carbon fiber (CF) stitch densities were used to prepare a number of CF stitched CFRP laminates for double cantilever beam (DCB) tests. An insert tongue-type loading fixture, developed by the Japan Aerospace Exploration Agency (formerly the National Aerospace Laboratory of Japan), was also employed in the DCB test. Interlaminar tension tests were carried out under an out-of-plane directional loading using a single CF stitch thread in the CFRP laminates. The DCB test results clarified that the relationship between the volume fractions of the CF stitch thread ($V_{ft}$) and mode I critical energy release rate ($G_{Ic}$) showed a mostly linear function with a higher gradient than that of the $Kevlar^{(R)}$ stitched CFRP laminates. The CF stitched CFRP tension test results indicated that the consumption energy per unit area ($E_i$) was larger than that of $Kevlar^{(R)}$ stitched CFRP laminates.

Development of One-Pass Rice Whitener with Cutting Blades of Hard Metal (초경날식 절삭형 완패스정미기의 개발)

  • 정종훈
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.199-209
    • /
    • 1997
  • A one-pass rice whitener with hard metal blades was developed to solve the problems of the existing one-pass rice whitener. The developed one-pass rice whitener was tested and improved through various milling experiments. It showed high performance such as the capacity of 3.5 t/h, the energy consumption of $1.0 kWh/100kg$, milled rice recovery of 91.6%, broken rice rate of 2.2%, the crack rate of 1.9% at the 750 rpm of the roller shaft, compared with those other domestic and foreign one-pass rice whiteners. Especially, it could whiten broun rice of high moisture (16~l7%) with water sprayed at low internal pressure of less than $0.2 kg/cm^2$ and low temperature due to the characteristics of the cutting part composed of 24 hard metal blades. The developed one-pass rice whitener was industrilized and distributed to some rice processing complexs in one fourth price compared with that of imported one-pass rice whiteners.

  • PDF

The Effect of Polyethylene Glycol on the Trivalent Chromium Electroplating (Polyethylene glycol이 3가크롬 전기도금에 미치는 효과)

  • Lee, Joo-Yul;Phuong, Nguyen Van;Lim, Sung-Hwan;Han, Seung-Zeon;Kwon, Sik-Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • The effect of organic additives, polyethylene glycol (PEG), on the trivalent chromium electroplating was analysed in the view point of current efficiency, solution stability and metallurgical structure. It was measured that PEG-containing trivalent chromium solution had about 10% higher current efficiency than pure solution and controlled the micro-crack density of electrodeposits. PEG exhibited profound effect on the solution stability by reducing the consumption rate of formic acid which acts as a complexant to lower the activation energy required for electrochemical reduction of trivalent chromium ions. It was also revealed that the formation of chromium carbide layer was facilitated in the presence of polyethylene glycol, which meant easier electrochemical codeposition of chromium and carbon, not single chromium deposition. Trivalent chromium layer formed from PEG-containing solution was amorphous with local nano-crystalline particles, which were prominently developed on the entire surface after non-oxidative heat treatment.