• Title/Summary/Keyword: Crack Defect

Search Result 292, Processing Time 0.028 seconds

The Influence of the Small Circular Hole Defect on the Fatigue Crack Propagation Behavior in Aluminum Alloys (알루미늄 합금재의 피로크랙 전파거동에 미치는 미소원공결함)

  • Kim, G.H.;Lee, H.Y.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.834-840
    • /
    • 2008
  • We carried out fatigue testing with materials of aluminum alloyC7075-T6, 2024-T4) by rotary bending fatigue tester. We investigated fatigue limit, fatigue crack initiation, fatigue crack propagation behavior and possibility of fatigue life prediction to the different small circular hole defect. The summarized result are as follows; Fatigue limit of the smooth specimens were related tensile strength and yield strength. In case of more large applied stress and small circular hole crack defect, the fatigue crack was grown rapidly. The fatigue crack propagation behavior proceed at according to inclusion. Fatigue crack propagation ratio appeared instability and retardation phenomenon in the first half of fatigue life but appeared stability and replied in the latter half. On other hand, this experimental data of the materials are appeared fatigue life predictability.

Behavior of Initiation and Propagation of Fatigue Cracks around Microholes (미소원공주위의 피로크랙발생전파 거동에 관한 연구)

  • 송삼홍;오환석
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.74-82
    • /
    • 1987
  • This study has been made to investigate into the behavior of fatigue limit, of fatigue crack initiation, and of fatigue crack propagation under the condition of rotating bending stress; specifically on the independency of stress field as well as the crack behavior of surface micro hole defect, which is made artificially through the specimen. The results obtained can be summarized as followa; 1) For the single micro hole defect, initiation of fatigue crack is occurred at both tips of microhole defect simultaneosly along the slip which are produced in the range of maximum principal stress arround micro hole defect independent of the size of micro hole defect. 2) For the neighbored deuble micro hole defects with equal size, in the range ($\frac{L}{r}$)ratio $\gtrsim$ 3 defined as the size of micro hole defect(2r) to the distance between the centers of micro hole defects (2L), the crack behavior of the micro hole defects is same as single one. However, for the range of $\frac{L}{r}$<3, the interference effect becomes significant as the ratio approaches to 1.

  • PDF

Influence of Artificial Defect on Fatigue Limit in Austempered Ductile Iron (오스템퍼링처리한 구상흑연주철의 피로한도에 미치는 인공결함의 영향)

  • Kim, Min-Geon;Kim, Jin-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1922-1928
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the influence of artificial defects on fatigue limit in annealed and austempered ductile iron. Obtained main results are as follows : (1) Artificial defect(micro hole type, dia.<0.4 mm) on specimen surface did not bring about a obvious reduction of fatigue limit in austempered ductile iron(ADI) as compared with annealed ductile iron. (2) According to the investigation of $\sqrt{area}_c$ which is the critical defect size to crack initiation at artificial defect, $\sqrt{area}_c$ of ADI is larger than that of annealed ductile iron. This shows that the situation of crack initiation at artificial defect in ADI is more difficult in comparison with annealed ductile iron. (3) One of the reasons for the low rate of crack initiation from artificial defect in ADI is that the resistance of matrix to crack initiation is higher than that of annealed ductile iron. (4) In case that the $\sqrt{area}$ of artificial defect and graphite nodule is the same, the rate of crack initiation from graphite nodule is higher than that from artificial defect. This reason is that the serious ruggedness around graphite nodule is formed by austempering treatment.

An Analysis of Defect Dispute about Inter-Layer Crack Repair Method on Apartment Houses (공동주택 층간 이음부 균열 보수공법에 대한 하자분쟁 분석)

  • Lee, Tae-Hyeong;Jeong, Yong-Ki;Choi, Byung-Ju;Kim, Ok-kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.146-147
    • /
    • 2017
  • Recently, as the living standards of residents in apartment houses continued to improve, the dispute of post management have also increased. one of the Issue, Concrete Cracks comprised high percentage of dispute. Especially, between criteria the cost of repairing defect and the judgement of defect isn't clear, they are a lot of dispute in this regard. Even though lots of the criteria about Inter-layer crack is existed by judging defects, In a court, they are judging their own criteria about Inter-layer crack. The purpose of this study is to compare and analyze Defect Judement Standard both MOLIT and Court, and to provide the Improvement for Defect Judgement and Repair Method of Inter-layer concrete crack.

  • PDF

Improvement Measures for the Defect Determination and the Application of Repair Method for Interlayer Cracks in Apartment Houses (공동주택 층간균열의 하자판정 및 보수공법 적용에 대한 개선방안)

  • Choi, Sangjin;Shin, Manjoong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.5
    • /
    • pp.23-33
    • /
    • 2022
  • Cracks, which account for the largest proportion of defect lawsuits in apartment buildings, are not clear on the criteria for defect determination, so judgments about defects are mixed. Interlayer cracks, which account for most of the crack defect judgment amount, tend to be judged as defects regardless of the crack width or condition, and repair methods are mostly set uniformly. This starts from the problem that the standards of the Ministry of Land, Infrastructure and Transport and the Construction Appraisal Practice, which the courts use as standards, do not match. It is necessary to establish a defect determination standard that can be applied to all stakeholders through the amendment of laws and the revision of the Court Appraisal Practice. In addition, it is necessary to apply the crack repair method according to the width and condition of the interlayer crack. If the defect determination and the application of the repair method for cracks are rationalized, it could serve as an opportunity to change the current trend of defect disputes that rely only on litigation.

Evaluation of Fatigue Strength and Characteristics of Fatigue Crack Closure in SM35C Steel (중탄소강의 피로크랙 개폐구의 특성 및 피로강도의 평가)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • It is not clearly known how surface defects or inclusions of a medium carbon steel affect a fatigue strength. In this study, we used SM35C specimens with spheroidized cementite structure to eliminate dependence of micro structure of fatigue crack. The investigation was carried out by behavior of crack closure at non-propagation crack and effect of the fatigue limit according to the artificial defects size. Experimental findings are obtained as follows : (1) Fatigue crack initiation point of medium carbon steel with spheroidized cementite structure is at the surface defects. (2) Non-propagating crack length of smooth specimen is equal to the critical size of defect. (3) Considering the opening and closure behavior of fatigue crack, the defect shape results in various crack opening displacement, while it does not affects the fatigue limit level of medium carbon steel with spheroidized cementite structure. (4) The critical length of the non-propagation crack of smooth specimen is the same as critical size of defect in transient area which determines threshold condition in steel with spheroidized cementite structure.

  • PDF

Geometric Characteristic of Wall-thinning Defect Causing Circumferential Crack in Pipe Elbows (원주방향 균열이 발생되는 곡관 감육부의 형상적 특성)

  • Kim, Jin Weon;Lee, Sung Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2011
  • The objective of this study is to classify the geometry of wall-thinning defect that causes a circumferential crack in the pipe elbows subjected to internal pressure. For this objective, first of all a criterion to determine the occurrence of circumferential cracking at wall-thinned area was developed based on finite element simulation for burst tests of pipe elbow specimens that showed axial and circumferential cracking at wall-thinned area. In addition, parametric finite element analysis including various wall-thinning geometries, locations, and pipe geometries was conducted and the wall-thinning geometries that initiate circumferential crack were determined by applying the criterion to the results of parametric analysis. It showed that the circumferential crack occurs at wall-thinning defect, which has a deep, wide, and short geometry. Also, it is indicated that the pipe elbows with larger radius to thickness ratio are more susceptible to circumferential cracking at wall-thinned area.

A study on the growth behaviors of surface fatigue crack initiated from a small-surface defect of 2024-T3 and brass (2024-T3 및 황동의 작은 표면결함재의 피로균열 성장특성에 관한 연구)

  • 서창민;오명석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.53-64
    • /
    • 1996
  • In this paper, rotating bending fatigue tests have been carried out to investigate the growth behabiors of surface fatigue crack initiated from a small artificial surface defect, that might exist in real structures, on 2024-T3 and 6:4 brass. The test results are analysed in the viewpoints of both strength of materials and fracture mechanics, it can be concluded as follows. The effect of a small artificial surface defect upon the fatigue strength is very large. The sensitivity of 2024-T3 on the defect is higher than that of 6:4 brass. The growth behavior of the surface fatigue crack of 2024-T3 is different from that of 6:4 brass. The growth rate of the surface fatigue crack of 2024-T3 is considerably rapid in the early stage of the fatigue life and apt to decrease in the later stage. It was impossible to establish a unifying approach in the analysis of crack growth begabior of 2024-T3 and 6:4 brass using the maximum stress intensity factor because of their dependence on stress level. But if the elastic strain and cyclic total strain intensity factor range were applied to obtain the growth rate of surface fatigue cracks of the materials, the data were found to be nearly coincided.

  • PDF

Experimental Study on the Surface Defects of Scribed Glass Sheets (절단 유리판의 표면결함에 관한 실험적 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.332-337
    • /
    • 2008
  • This paper presents the surface defect analysis based on the experimental investigation of scribed glasses. The scribing process by a diamond wheel cutter is widely used as a reliable and inexpensive method for sizing of glass sheets. The wheel cutter generates a small median crack on the glass surface, which is then propagated through the glass thickness for complete separation. The surface contour patterns in which are formed during a scribing process are strongly related to wheel cutter parameters such as wheel tip surface finish, tip angle and wheel diameter, and cutting process parameters such as scribing pressure, speed and tooling technique. The scribed surface of a glass sheet provides normal Wallner lines, which represent regular median cracks and crack propagation in glass thickness, and abnormal surface roughness patterns. In this experimental study, normal and abnormal surface topographic patterns are classified based on the surface defect profiles of scribed glass sheets. A normal surface of a scribed glass sheet shows regular Wallner lines with deep median cracks. But some specimens of scribed glass sheets show that abnormal surface profiles of glass sheets in two pieces are represented by a chipping, irregular surface cracks in depth, edge cracks, and combined crack defects. These surface crack patterns are strongly related to easy breakage of the scribed glass imposed by external forces. Thus the scribed glass with abnormal crack patterns should be removed during a quality control process based on the surface defect classification method as demonstrated in this study.

The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate - (원공노치 인근에 발생한 결함의 위치변화가 균열성장률(da/dN) 및 응력확대계수범위(δK)의 관계에 미치는 영향 - 단일재 알루미늄과 Al/GFRP 적층재의 피로거동 비교 -)

  • Kim, Cheol-Woong;Ko, Young-Ho;Lee, Gun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.344-354
    • /
    • 2007
  • The objective of this study is to investigate the effect of arbitrarily located defect around the circular hole in the aircraft structural material such as Al/GFRP laminates and monolithic Al alloy sheet under cyclic bending moment. The fatigue behavior of these materials may be different due to the defect location. Material flaws in the from of pre-existing defects can severely affect the fatigue crack initiation and propagation behavior. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic Al alloy and Al/GFRP laminates under cyclic bending moment. The fatigue behavior i.e., the stress concentration factor($K_t$), the crack initiation life($N_i$), the relationship between crack length(a) and cycles(N), the relationship between crack growth rate(da/dN) and stress intensity factor range(${\Dalta}K$) near a circular hole are considered. Especially, the defects location at ${\theta}_1=0^{\circ}\;and\;{\theta}_2=30^{\circ}$ was strongly effective in stress concentration factor($K_t$) and crack initiation life($N_i$). The test results indicated the features of different fatigue crack propagation behavior and the different growing delamination shape according to each location of defect around the circular hole in Al/GFRP laminates.