• 제목/요약/키워드: Crack Closure Effect

검색결과 80건 처리시간 0.029초

개선된 참조응력법을 이용한 복합균열이 존재하는 배관의 균열개구변위 계산 (Crack Opening Displacement Analysis of Complex Cracked Pipes based on Enhanced Reference Stress Method)

  • 허남수;김윤재;김영진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.80-86
    • /
    • 2001
  • An engineering estimation equation for the crack opening displacement (COD) is proposed for a complex cracked pipe, based on the reference stress approach. To define the reference stress, a simple plastic limit load analysis for the complex cracked pipe subjected to combined bending and tension is performed considering the crack closure effect in the compressive-stressed region. Comparison with ten published test data and the results from existing method shows that the present method not only reduces non-conservatism associated with the existing method, but also provides consistent and overall satisfactory results.

  • PDF

복합균열이 존재하는 배관의 균열개구변위 계산을 위한 새로운 공학적 계산식 (New Engineering Approach for Estimating Crack Opening Displacement of Complex Cracked Pipes)

  • 김영진;허남수;김윤재
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1235-1241
    • /
    • 2001
  • An engineering estimation equation for the crack opening displacement(COD) is proposed for a complex cracked pipe, based on the reference stress approach. To define the reference stress, a simple plastic limit load analysis for the complex cracked pipe subjected to combined bending and tension is performed considering the crack closure effect in the compressive-stressed region. Comparison with ten published test data and the results from existing method shows that the present method not only reduces non-conservatism associated with the existing method, but also provides consistent and overall satisfactory results.

Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포 (Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method)

  • 손기선;이성학;백성기
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

SA516/70 압력용기 강의 저온 피로균열 진전 속도에 미치는 응력비의 영향 (The Effect of Stress Ratio on Fatigue Crack Propagation Rate in SA516/70 Pressure Vessel Steel at Low Temperature)

  • 박경동;김정호;최병국;임만배
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.18-24
    • /
    • 2001
  • The fatigue crack growth behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $-60^{\circ}C$,$-80^{\circ}C$ and $-100^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.

저온 압력용기용 SA516/60강의 피로균열 진전 속도에 미치는 응력비의 영향 (The Effect of Stress Ratio on Fatigue Crack Propagation Rate in SA516/60 Pressure Vessel Steel at Low Temperature)

  • 박경동;하경준;박상오
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 추계학술대회 논문집(Proceeding of the KOSME 2001 Autumn Annual Meeting)
    • /
    • pp.80-87
    • /
    • 2001
  • The fatigue crack growth behavior of the SA516/60 steel which is used for pressure vessels was examined experimentally at room temperature $25^{\circ}C, -30^{\circ}C, -60^{\circ}C, -80^{\circ}C, -100^{\circ}C$ and -l2$0^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ΔK was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ΔK. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

Crack effect on the elastic buckling behavior of axially and eccentrically loaded columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.169-184
    • /
    • 2006
  • A close form solution of the maximum deflection for cracked columns with rectangular cross-sections was developed and thus the elastic buckling behavior and ultimate bearing capacity were studied analytically. First, taking into account the effect of the crack in the potential energy of elastic systems, a trigonometric series solution for the elastic deflection equation of an arbitrary crack position was derived by use of the Rayleigh-Ritz energy method and an analytical expression of the maximum deflection was obtained. By comparison with the rotational spring model (Okamura et al. 1969) and the equivalent stiffness method (Sinha et al. 2002), the advantages of the present solution are that there are few assumed conditions and the effect of axial compression on crack closure was considered. Second, based on the above solutions, the equilibrium paths of the elastic buckling were analytically described for cracked columns subjected to both axial and eccentric compressive load. Finally, as examples, the influence of crack depth, load eccentricity and column slenderness on the elastic buckling behavior was investigated in the case of a rectangular column with a single-edge crack. The relationship of the load capacity of the column with respect to crack depth and eccentricity or slenderness was also illustrated. The analytical and numerical results from the examples show that there are three kinds of collapse mechanisms for the various states of cracking, eccentricity and slenderness. These are the bifurcation for axial compression, the limit point instability for the condition of the deeper crack and lighter eccentricity and the fracture for higher eccentricity. As a result, the conception of critical transition eccentricity $(e/h)_c$, from limit-point buckling to fracture failure, was proposed and the critical values of $(e/h)_c$ were numerically determined for various eccentricities, crack depths and slenderness.

複合組織鋼의 부식피로파괴에 미치는 3.5% NaCl水溶液의 pH와 母相粒徑의 效果 (Effect of pH in 3.5% NaCl aqueous solution and ferrite grain size on corrosion fatigue fracture of dual phase steel)

  • 오세욱;강호민
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.867-876
    • /
    • 1987
  • 본 연구에서는 보통강재인 SS 41 강을 열처리하여 얻은 M.E.F.복합조직강의 모상입경변화와 3.5% NaCl수용액의 pH변화 조건하에서 반복굽힘피로실험을 하여 부식 피로파괴에 미치는 영향에 대해 고찰하였다.

저온 압력용기용 강의 피로파괴에 미치는 온도의 영향 (The Effect of Temperature on Fatigue Fracture in Pressure Vessel Steel at Low Temperature)

  • 박경동;하경준
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.359-365
    • /
    • 2002
  • The fatigue crack growth behavior of the SA516/60 steel which is used for pressure vessels was examined experimentally at room temperature $25^{\circ}C,\;-30^{\circ}C,\;-60^{\circ}C,\;-80^{\circ}C,\;-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to tile extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

A review of experimental and numerical studies on crack growth behaviour in rocks with pre-existing flaws

  • G. Sivakumar;V.B. Maji
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.333-366
    • /
    • 2023
  • Rock as a mass generally exhibits discontinuities, commonly witnessed in rock slopes and underground structures like tunnels, rock pillars etc. When these discontinuities experiences loading, a new crack emerges from them which later propagates to a macro scale level of failure. The failure pattern is often influenced by the nature of discontinuity, geometry and loading conditions. The study of crack growth in rocks, namely its initiation and propagation, plays an important role in defining the true strength of rock and corresponding failure patterns. Many researchers have considered the length of the discontinuity to be fully persistent on rock or rock-like specimens by both experimental and numerical methods. However, only during recent decades, there has been a substantial growth in research interest with non-persistent discontinuities where the crack growth and its propagation phenomenon were found to be much more complex than persistent ones. The non-persistence fractures surface is generally considered to be open and closed. Compared to open flaws, there is a difference in crack growth behaviour in closed or narrow flaws due to the effect of surface closure between them. The present paper reviews the literature that has contributed towards studying the crack growth behaviour and its failure characteristics on both open and narrow flaws subjected to uniaxial and biaxial compression loading conditions.