• Title/Summary/Keyword: CrN/Cu

Search Result 211, Processing Time 0.025 seconds

A Study on the Characteristics of Sn-Ag-X Solder Joint (Sn-Ag-X계 무연솔더 접합부의 미세조직 및 전단강도에 관한 연구)

  • 김문일;문준권;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.77-81
    • /
    • 2002
  • Many kinds of Pb-free solder have been investigated because of the environmental concerns. Sn-Ag-Cu system is well blown as most competitive Pb-free solder. However, since Sn-Ag-Cu system has relatively high melting point compared to Sn-Pb eutectic, it may a limitation, the some application. In this study, Bi and In contained solder of $Sn_3Ag_8Bi_5In$ which has relatively lower melting point, $188~204^{\circ}C$, was investigated. $Sn_3Ag_8Bi_5In$ solder ball of $500\mu\textrm{m}$ diameter was set on the Ni/Cu/Cr-UBM and reflow soldered in the range of $220~240^{\circ}C$ for 5~15s. The maximum shear strength of the solder ball was around 170mN by reflowing at $240^{\circ}C$ for 10s. Intermetallic compound formed on the UBM of Si-wafer was analysed by SEM(scanning electron microscope) and XRD(X-ray diffractometer).

The Low Resistivity Gate Metals Formation of Thin Film Transistors by Selective CVD

  • Park, S.J.;Bae, N.J.;Kim, S.H.;Shin, H.K.;Choi, J.S.;Yee, J.G.;Choi, S.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.108-112
    • /
    • 1995
  • Copper and aluminum selective deposition using (hfac)Cu(VTMS) and DMEAA precursors were performed in a warm-wall low pressure chemical vapour deposition reactor. The films of Cu and AI deposited on Corning 7059 glass and quartz with pattern of Cr seed metal. Selective deposition can be achieved at a pressure range of from 10-1 to 10 torr and substrate temperature range of 150-25$0^{\circ}C$. Selective deposition of Cu and AI by CVD is one of candidate for gate material formation fo larger area and high resolution plat panel displays.

  • PDF

Characteristics of a Novel Acinetobacter sp. and Its Kinetics in Hexavalent Chromium Bioreduction

  • M., Narayani;K., Vidya Shetty
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.690-698
    • /
    • 2012
  • Cr-B2, a Gram-negative hexavalent chromium [Cr(VI)] reducing bacteria, was isolated from the aerator water of an activated sludge process in the wastewater treatment facility of a dye and pigment based chemical industry. Cr-B2 exhibited a resistance for 1,100 mg/l Cr(VI) and, similarly, resistance against other heavy metal ions such as $Ni^{2+}$ (800 mg/l), $Cu^{2+}$ (600 mg/l), $Pb^{2+}$ (1,100 mg/l), $Cd^{2+}$ (350 mg/l), $ZN^{2+}$ (700 mg/l), and $Fe^{3+}$ (1,000 mg/l), and against selected antibiotics. Cr-B2 was observed to efficiently reduce 200 mg/l Cr(VI) completely in both nutrient and LB media, and could convert Cr(VI) to Cr(III) aerobically. Cr(VI) reduction kinetics followed allosteric enzyme kinetics. The $K_m$ values were found to be 43.11 mg/l for nutrient media and 38.05 mg/l for LB media. $V_{max}$ values of 13.17 mg/l/h and 12.53 mg/l/h were obtained for nutrient media and LB media, respectively, and the cooperativity coefficients (n) were found to be 8.47 and 3.49, respectively, indicating positive cooperativity in both cases. SEM analysis showed the formation of wrinkles and depressions in the cells when exposed to 800 mg/l Cr(VI) concentration. The organism was seen to exhibit pleomorphic behavior. Cr-B2 was identified on the basis of morphological, biochemical, and partial 16S rRNA gene sequencing chracterizations and found to be Acinetobacter sp.

Fabrication of Planar Multi-junction Thermal Converter (평면형 다중접합 열전변환기의 제작)

  • Kwon, Sung-Won;Park, S.I.;Cho, Y.M.;Kang, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.17-24
    • /
    • 1996
  • Planar multi-junction thermal converters were fabricated for precise measurements of the ac voltage and current by an ac-dc transfer method. A heater and a thermocouple array were fabricated onto a sandwiched membrane, $Si_{3}N_{4}$ (200 nm) / $SiO_{2}$ (400 nm) / $Si_{3}N_{4}$ (200 nm), a thickness of $0.8\;{\mu}m$ and a size of $2{\times}4\;mm^{2}$, which is supported by a surrounding frame. The NiCr heater is located at the center of the membrane vertically. Hot junctions of $48{\sim}156$ pairs of thermocouples (Cu-CuNi44) are located near or onto the heater, and cold junctions are located onto the silicon frame. Output of the thermal converters for 10 mA dc input was $76\;mV{\sim}382\;mV$ dependent on a model, and short term stability of the outputs was ${\pm}5{\sim}15\;ppm$/ 10 min with 5 mA dc input. Responsivity in air was in the range of $3.9{\sim}14.5V/W$. Responsivity of the model BF48 in air which has 48 thermocouples was 2 times or greater than that of 3 dimensional multi-junction thermal converter in vacuum which has 56 thermocouples. AC-DC transfer differences with an input of 10 mA or less were less than ${\pm}1\;ppm$ in the frequency range from 5 Hz to 2 kHz, and about $2{\sim}3\;ppm$ at 5 kHz and 10 kHz.

  • PDF

Vertical Distribution of the Heavy Metal in Paddy Soils of Below Part at Guundong Mine in Milyang, Korea (구운동 폐광산 하류 논토양의 토심별 중금속함량)

  • Yun, Eul-Soo;Park, Sung-Hak;Ko, Jee-Yeon;Jung, Ki-Yeol;Park, Ki-Do;Hwang, Jae-Bok;Park, Chang-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.590-595
    • /
    • 2010
  • This study was conducted to investigate form of pollution brought by residual of mine tailing in agricultural land, and get basic information need for environment restoration. Guundong mine was completely restored region by implementation the soil pollution prevention plan. The districts is soils in Guundong mine vicinity the Mahul-ri, Muan-myeon, Miryang city, Gyeongsangnam-do. The nature of soil studied is the Shinra series andesite and mineral deposits which contain brimstone and heavy metals such as gold, silver, copper, lead, and zinc. The residual mine tailing and around agricultural land of heavy metals analyzed with 0.1N HCI solubility. The chemical properties of surface soil in upper part around mining area were pH 4.3-4.4, organic matter 19-21 g $kg^{-1}$, available $P_2O_5$ 85 mg $kg^{-1}$, exchangeable Ca 0.21-0.25 $cmol_c\;kg^{-1}$, exchangeable Mg 0.04 $cmol_c\;kg^{-1}$. The pH, exchangeable Ca, and Mg were increased with soil depth. The contents of 0.1N HCl extractable Cu, Cd, Pb, Cr, and Ni in soil (siteI) which influenced by outflow water from mine tailing were 97, 0.6, 197, 0.28 및 0.12 mg $kg^{-1}$, respectively. The vertical distribution of heavy metals in soil varied considerably among the metals kind. In case of siteI, The content of Cu, Pb, and Cr in soil was highest at surface soil. However, the content of Cd, Zn, Ni, and Mn was high at middle part of soil profile.

Groundwater quality in the Shallow Aquifer nearby the Gubong gold-mine Tailings (구봉 금광산의 광미 인근지역의 천부지하수 수질특성)

  • Woo, N.-C.;Choi, M.-J.
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.148-154
    • /
    • 1998
  • Gubong gold-mine, previously one of the largest gold mines in Korea, is located at the mid-west of the South Korea. In the areas nearby the mine, the shallow groundwater was the major source for domestic and farming water-supply. Soil contamination by Cd, Cu, Pb and Zn was previously known in this area. This study is objected to identify quality of the shallow groundwater, possibly affected by the mine tailings. Samples were collected from a nearby stream, shallow groundwater and seepage from the tailings. Chemical analysis for the water quality includes major cations such as Na, K, Ca, and Mg, anions as F, Cl, NO$_3$, SO$_4$, HCO$_3$, and trace elements as Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb, Se, As, Hg. Water types could be drawn into four groups from the plots of Piper, Stiff diagrams and cluster analysis. SAR-Conductivity plot indicates the water does not pose either alkalinity or salinity hazards for irrigation. Major contaminant in groundwater appeared to be arsenic, released from arsenopyrites in tailings by oxidation. Dredging of buried railing materials could stimulate the release of arsenic from the sediments to the groundwater.

  • PDF

금속선을 삽입한 고체 추진제의 연소 특성 연구

  • 유지창;박영규;김인철;황갑성;현형수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.85-92
    • /
    • 1995
  • HTPB/AP/Al이 기본 조성인 ADP 302 혼합형 추진제를 대상으로 4종의 금속선(Ag, Cu, Al, Ni-Cr)을 삽입하여 금속선 직경(0.1mm~0.8mm)별로 압력에 따른 금속선과 인접한 추진제의 연소 속도($r_w)를 측정하여 금속선 삽입 추진제의 연소 속도 증가비($r_w$/$r_sb$)와 압력 지수( n )의 변화를 고찰한 결과 금속선 종류에 따른 연소 속도 증가비($r_w$/$r_sb$)는 Ag> Cu>Al>Ni-Cr선을 삽입한 추진제의 순으로 나타났고 금속선의 열확 산 계수의 크기순과 일치하였다. Buckingham $\pi$ 이론을 적용한 무차원 해석으로부터 실험식을 구하여, 이 실험식에 의해 계산된 ($r_w)와 실험으로부터 얻어진 ($r_w)를 서로 비교하여 본 결과 잘 부합됨을 알 수 있었다. 또한 금속선 수에 따른 추진제 그레인의 연소 면적을 해석적으로 계산하여,($r_w$/$r_sb$)가 2, 3, 4, 5 배로 증가함에 따른 시간에 따른 연소 면적 증가비의 변화를 금속선 수에 따라서 비교하여 본 결과 정상 상태에서의 그레인의 연소 면적의 증가비($A_b$/$A_0$)는 금속선에 인접한 추진제의 연소 속도 증가비($r_w$/$r_sb$)와 일치했으며, 정상 상태의 연소 면적 증가비는 삽입된 금속선의 수와는 무관하며 정상 상태에 도달하는 시간에만 영향을 주는 것으로 나타났다.

  • PDF

Characteristics of Cadmium Accumulating Mutant, Pseudomonas maltophilia H-8M (카드뮴 축적 변이주인 Pseudomonas maltophilia H-8M의 특성)

  • Ryu, Beung-Ho;Rho, Myung-Hoon;Jung, Su-Ja;Bae, Ki-Chul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.70-75
    • /
    • 1992
  • This study was carried out to investigate the characteristics of a mutant, Pseudomonas maltophilia H-8M selected with the treatment of Pseudomonas maltophilia H-8 by N-methyl-N-nitro-N-nitrosoguanidine(MNNG). This mutant showed highest ability of cadmium accumulation. The growth rate of Pseudomonas maltophilia H-8M showed about 80% in 1000ppm Cd containing medium when compare with control for 36h at $30^{\circ}C$. Pseudomonas maltophilia H-8M not inhibited on the growth in addition of various heavy metal such as $Hg^{2+}$, $Zn^{2+}$, $Pb^{2+}$, $Cu^{2+}$, $Cr^{2+}$ and $Co^{2+}$, but inhibited in $Sn^{2+}$ containing medium, respectively. Pseudomonas maltophilia H-8M was accumulated the highest cadmium level of 62.3% on whole cell in the medium containing 50 ppm and 80% of accumulated cadmium was distributed in the cell wall.

  • PDF

A Study on Heavy Metal Contents in Vegetables and Soil at Seoul Area (서울시 일부지역에서 재배한 채소류 및 토양중 중금속 함량에 관한 연구)

  • 강주성;박석환;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.2
    • /
    • pp.55-63
    • /
    • 1994
  • While environmental pollution being developed, there have been some cases that residents on certain parts of Seoul area have cultivated vegetables in a small scale, and consumed the produce of theirs thinking them not polluted. Therefore the need for study about whether those vegetables and soil were polluted was growing. In this study, Seoul area (Tobong-dong, Chang-dong, Wolgyedong, P'il-dong, Oksu-dong, and Karibong-dong) and Kyanggi area (Changhang, P'och'an, Kap'yang, Yangp'y~ng) where pollution was thought to be less severe than that of the former were selected for the sampling area. Cabbage, pumpkin and young pumpkin were sampled and dried to be analyzed the contents of Cd, Cr, Cu, Ni, Pb, Zn, and moisture content was also analyzed. And at the same time 0.1 N-HCl soluble heavy metal content of soil was measured, and the results obtained were descrived as follows. Heavy metal contents of soil in Seoul and Kyonggi were Cd 0.184 ppm, 0.118 ppm, Cr 2.355 ppm, 0.441 ppm, Cu 29.16 ppm, 3.331 ppm, Ni 1.650 ppm, 0.829 ppm, Pb 26.77 ppm, 4.696 ppm, Zn 57.47 ppm, 14.94 ppm respectively. Heavy metal contents of cabbage in Seoul and Kyonggi were Cd 0.407 ppm, 0.241 ppm, Cr 0.388 ppm, 0.402 ppm, Cu 6.853 ppm, 4.486 ppm, Ni 1.479 ppm, 0.878 ppm, Pb 0.812 ppm, 0.258ppm, Zn 112.2 ppm, 54.86ppm respectively. Heavy metal contents of pumpkin in Seoul and Ky6nggi were Cd 0.011 ppm, 0.011 ppm, Cr 0,262 ppm, 0.197 ppm, Cu 3.302 ppm, 2.539 ppm, Ni 0.717 ppm, 0.369 ppm, Pb 0.257 ppm, 0.083 ppm, Zn 28.75 ppm, 14.01 ppm respectively. Correlation between heavy metal contents of soil and those of vegetables was represented high as a whole. In all heavy metals cabbage had higher values of concentrations than those of pumpkin (p<0.001). Concentrations of young pumpkin were higher than those of big pumpkin. It was probably due to the fact that young pumpkin containing not only inner part of pumpkin but also seeds was used as a sample. When classified by region, relatively high concentrations were observed in the samples of Karibong-dong, and in the sample of Jungtang riverside Cd was higher, and in the sample of Namsan Pb was higher than any other district.

  • PDF

Pollution Status of Surface Sediment in Jinju Bay, a Spraying Shellfish Farming Area, Korea (살포식 패류양식해역인 진주만 표층 퇴적물의 오염도)

  • Lee, Garam;Hwang, Hyunjin;Kim, Jeong Bae;Hwang, Dong-Woon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.392-402
    • /
    • 2020
  • We investigated the concentrations of acid volatile sulfide (AVS), ignition loss (IL), total organic carbon (TOC), total nitrogen (TN), and metallic elements (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn), in August 2015, to determine the spatial distribution and pollution status of organic matter and metals in the surface sediment of Jinju Bay, a spraying shellfish farming area, Korea. The concentrations of organic matter and metallic elements were significantly higher in the southern part of the bay than in the mouth and center of the bay. The C/N ratio (5.7~8.0) in the sediment represents the dominance of organic matter of oceanic origin in the surface sediment of the study area. The concentrations of AVS, TOC, and metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) were much lower than the values of the sediment quality guidelines applied in Korea. Based on the results of the pollution load index (PLI) and ecological risk index (ERI), the metal concentrations in the surface sediment of Jinju Bay have a weakly negative ecological effect on benthic organisms although the sediments with high metal pollution status are distributed in the southern parts of the bay, with high dense shellfish farming areas. Thus, the surface sediments in Jinju Bay are not polluted with organic matter and are slightly polluted with metallic elements.