• Title/Summary/Keyword: CrN/Cu

Search Result 211, Processing Time 0.03 seconds

Recycling of Waste Egg Shells for Treatment of Laboratory Wastewater containing Heavy Metals (중금속 함유 실험실 폐수처리를 위한 폐달걀껍질의 재활용)

  • Kim, Eun-Ho;Kim, Hyeong-Seok;Seong, Nak-Chang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.1
    • /
    • pp.13-21
    • /
    • 1999
  • The purposes of this research were to evaluate the character of laboratory wastewater, and to examine the utilization of waste egg shells for neutralization and removal of heavy metals. Waste egg shells are excellent at neutralizing acidic wastewater, because they have alkaline minerals such as calcium. It must be seemed that removal rate of heavy metals were very influenced by adsobent dosage and adsorbate concentrations, because waste egg shells acted as precipitation and adsorption. If we reflected the adsorption capacity(k) and adsorption(1/n) of Freundlich isotherm, we couldn't consider waste egg shells as a good adsorbent. In view of these results, it showed that wastes containing the similar compositions as waste egg shells could utilize the neutralization, precipitation and adsorption of heavy metals in laboratory wastewater.

  • PDF

용출액의 pH 변화가 토양내 중금속 용출에 미치는 영향과 그에 따른 국내 토양오염 공정시험방법의 문제점

  • 오창환;유연희;이평구;이영엽
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.76-79
    • /
    • 2003
  • 국내의 토양오염 공정시험방법에서는 Zn, Ni 추출시 산분해법에 가까운 방법을 사용하는 반면, Cd, Cu, Pb, $Cr^{6+}$ 추출시 0.1N HCl용액으로 산처리하여 1시간을 진탕한 후 이를 필터로 여과하여 분석용액을 추출하는 용출법을 사용하고 있다(환경부, 2001). 시료내에는 완충 물질이 존재하기 때문에 용출법 사용시 초기 pH 인 1(0.1N HCl)이 유지되지 않아 완충능력이 높은 토양의 경우 현재 국내 공정법상의 용출법이 중금속 오염정도를 추정하는데 적절치 않을 수 있다. (중략)

  • PDF

A Study on the Characteristic Trace of Water Quality Pollutants in the Industrial Wastewater (업종별 산업폐수의 수질오염물질 배출 특성)

  • Park, Sun Ku;Kim, Sung Soo;Ko, Oh Suk
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.141-150
    • /
    • 1999
  • Twenty organic chemical substances, tetrachloroethylene, toluene, ethylbenzene, p-xylene, m-xylene, isopropyl benzene, stylene, bromobenzene, 1,3,5-trimethylbenzene, 2-chlorotoluene 1,2,4-trimethylbenzene, p-isopropyltoluene, 4-chlorotoluene, n-butylbenzene, 1,2,4-trichlorobenzene, naphthalene, tert-butylbenzene, sec-butylbenzene, phenol, isopropyl benzene hydroperoxide were isolated from untreated and treated wastewater collected at 76 companys of 9 types industry in the basin of Young San River. Their organic compounds were elucidated by Gas Chromatography/Mass Spectrometry (GC/MS) and by comparison with each standard reagents. Especially, phenol compound is detected from effluent water but not detected from plant wastewater in the chemical industry. Heavy metal, which are Cr, Mn, Cu, Zn, Cd, Pb, As, Al and Fe, are contained in the plant wastewater of all industry, Fe, Al of them is more detected than the other metals in plant wastewater. Cr, Cd, Pb, As is contained much in plant wastewater of electricity and electron, metal molding industry. Nine metals is nearely treated when plant wastewater is treated, and then the concentration of each other metals is detected below water quality standard or not detected by using AA.

  • PDF

Size Distributions of Trace Elements in Airborn Particulates Collected using Drum impactor at Gosan, Jeju Island : Measurements in Springtime 2002 (DRUM impactor를 이용한 대기 입자상 물질 중 원소성분의 입경분포 특성 : 제주도 고산지역의 2002년 봄철 (3.29-5.30) 측정 연구)

  • 한진석;문광주;류성윤;안준영;공부주;홍유덕;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.555-569
    • /
    • 2004
  • Size -segregated measurements of aerosol composition using 8-stage DRUM impactor are used to determine the transport of natural and anthropogenic aerosols at Gosan site from 29 March to 30 May in 2002. Separation of ambient aerosols by DRUM impactor offers many Advantages over other standard filtration techniques. Some of the most important advantages are the ability to segregate into details by particle tire, to better preserve chemical integrity since the air stream doesn't pars through the deposit, to collect samples as a function of time, and to have a wide variety of impaction surfaces available to match analytical needs. Although the transport of Yellow sand is a well-known phenomenon in springtime, the result of measurement shows that not only soil dust but also anthropogenic aerosols, including sulfur, enriched trace metals such as Pb, Ni, Zn. Cu, Cr, As, Se, Br, are transported to Gosan in springtime. This study combines the size- and time-resolved aerosol composition measurements with isentropic, backward air-mass trajectories in order to identify some potential source regions of anthropogenic aerosols. As a result, during the NYS period, the average concentration of PM$_{10}$ was 46$\mu\textrm{g}$/㎥, Si, Al. S, Fe, Cl, K, Ca were higher than 1,000 ng/㎥ and Ti was about 100 ng/㎥. The concentrations of Zn, Mn, Cu. Pb, Br, Rb, V, Cr, Ni. At, Se ranged between 1 and 70 ng/㎥. More than 50% typical soil elements, tuck as Al, Si, Fe, Cd. Ti, Cr, Cu, Br. were distributed in a coarse particle range(5.0-12${\mu}{\textrm}{m}$). In other hand, anthropogenic pollutants, luck as S, N, Vi, were mainly distributed in a fine particle range (0.09-0.56${\mu}{\textrm}{m}$). During the YS period, PM$_{10}$ increased about 8 times than NYS period, and main soil elements, such as Al, Si, S, K, V, Mn, Fe also doubled in coarse particle range (1.15-12${\mu}{\textrm}{m}$). But Zn, As, Pb, Cu and Se, which distributed in the time aerosols (0.09-0.56${\mu}{\textrm}{m}$), were on the same level with or decreased than NYS period. Finally. except the YS Period, coarse particles (2.5-12${\mu}{\textrm}{m}$) are inferred to be influenced by soil, coal combustion, waste incineration, ferrous and nonferrous sources through similar pathways with Yellow Sand. But fine particles have different sources, such as coal combustion, gasoline vehicle, biomass burning, oil or coal combustion, nonferrous and ferrous metal sources, which are transported from China, Korea peninsula and local sources.ces.

A Survey of the Kumho River Pollution (금호강 오염의 종합적 조사)

  • Bae, Zun-Ung;Lee, Sang-Hak;Lee, Sung-Ho
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.54-66
    • /
    • 2002
  • In order to study systematic survey of Kumho river pollution, water analysis for 24 items was conducted at 16 sites surrounding the Kumho river system for 3 times from May 2000 to February 2001. Analytical items for the study of water quality are as follows; water temperature, pH, BOD, COD, DO, SS, electrical conductivity, oil & grease, ABS, phenol, T-P, ${PO_4}^{3-}-P$, T-N, $NH_3-N$, ${NO_2}^--N$, ${NO_3}^--N$, Cu, Zn, Cr, Cd, Mn, Fe, Pb and As. The mean values obtained for water temperature, pH, BOD, COD, DO, SS, electrical conductivity, oil & grease, ABS, phenol T-P, T-N, Cu, Zn, Fe and Mn showed $17.84^{\circ}C$, 8.04, $2.54{\mu}g/mL$, $5.64{\mu}g/mL$, $7.07{\mu}g/mL$, $8.75{\mu}g/mL$, $600.4{\mu}S/cm$, $0.19{\mu}g/mL$, $0.015{\mu}g/mL$, $0.29{\mu}g/mL$, $0.21{\mu}g/mL$, $5.22{\mu}g/mL$, $0.005{\mu}g/mL$, $0.007{\mu}g/mL$, $0.044{\mu}g/mL$ and $0.001{\mu}g/mL$ respectively. As, Cd, Cr and Pb are not detected. The mean concentration of phenol, $NH_3-N$ and $NO_2-N$ were found to be increased compared to the prior study for 3 years from January 1997 to December 1999, that of BOD, COD, SS, oil & grease and ABS were found to be decreased and the others are nearly constant. The effect of Kumho river to the Nakdong river pollution are as follows. The mean concentration of BOD changed from $1.07{\mu}g/mL$ to $1.42{\mu}g/mL$ before and after of introducing of Kumho river water respectively. The mean concentration of COD, electrical conductivity, oil & grease, ABS, phenol, T-N and T-P changed from $1.99{\mu}g/mL$, $221{\mu}S/cm$, $0.15{\mu}g/mL$, $0.006{\mu}g/mL$, $0.06{\mu}g/mL$, $2.21{\mu}g/mL$ and $0.08{\mu}g/mL$ to $2.44{\mu}g/mL$, $392{\mu}S/cm$, $0.16{\mu}g/mL$, $0.015{\mu}g/mL$, $0.07{\mu}g/mL$, $2.81{\mu}g/mL$ and $0.19{\mu}g/mL$ respectively.

Geology and Soils of Chojeong-Miwon Area (초정-미원지역의 지질과 토양에 관한 연구)

  • 나기창
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2000
  • Chojeong area is mainly composed of the Ogcheon Group which consists of regionally metamorphosed, age-unknown sedimentary rocks. In the northwestern parts, the Group is intruded by the Jurassic Daebo granite and Cretaceous felsic and mafic dykes. The lowermost, Midongsan Formation which consists of milky white impure quartzite, crops out along the anticline axes with N40E trend. Ungyori quartzite Formation is intercalated with quartzite and slate. Miwon Formation is most widely exposed in the area and consists mainly of phyllitic sandy rocks with a thin crystalline limestone bed. Hwajeonri Formation is divided into two parts, pelitic lower and calcareous upper parts, composed with phyllite and slate. Changri and Hwanggangri Formations are typical members of Ogcheon Group, the former bearing coally graphite seams consists mainly of black slate and phyllite with intercalated greenish grey phyllite, the latter is pebble bearing phyllite formation of which matrix and pebbles are variable in compositions and size. Biotite granite, porphyritic granite and two mica granite belong to Jurassic so-called Dabo granite. They intruded the Ogcheon Group forming vast contact metarnophic zone. Quartz porphyry, mafic dyke and felsite intruded along the marginal zone of porphyritic granite batholith and fracture of NS trend. Main structural lineaments in Ogcheon Group shows N25-45E, NS and N30-45W trends. The N25-45E trends are mainly from general ductile deformation during regional metamorphism, showing isoclinal folding, Fl foliations and lithological erosional characters. Some of these trends are due to normal faults. The NS and N30-45W trends represent brittle deformation including faults and joints. In the area of granitic batholith, NS to N30- 45 trends are from the direction of dykes. In the soils of the area, average contents of heavy metal elements such as Cd, Cr, Cu, Pb, and Zn are 0.2, 50.6, 35.5, 27.9, and 93.4 ppm respectively, which are not higher than the average values of natural soils, under the tolerable level. Enrichment Index does not show any heavy metal pollution in the area. Average depths of weathering(5m vs. 2m), porosities(43.94 vs. 51.80), densities(l.29 vs. 1.15), and permeabilities(2.52 vs. 8.07) are comparable in granite areas and in the phyllite areas of Ogcheon Group.

  • PDF

Chemical characteristics of ions and trace metallic element of PM2.5 in Busan metropolitan area (부산지역 $PM_{2.5}$의 이온 및 미량 금속성분의 화학적 특성)

  • 전보경;서정민;최금찬
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.4
    • /
    • pp.63-71
    • /
    • 2001
  • PM 2.5/ samples were measured at two sites, Hadan(suburban site) and Anrak (roadside site) in Busan area. PM 2.5/ sampling was performed for 24-hour intervals by the FH9.5 particulate sampler. Aerosol samples were collected on PTFE filter. A total of 60 particulate samples were collected, dad samples were measured for Particulate mass concentration, metallic elements (Cr, Mn, Ni. Cu. Se, Fe, Pb, and Zn) and waer-soluble elements (C $l^{[-10]}$ , N $O_{3}$$^{[-10]}$ ,S $O_{4}$$^{2-}$, N $H_{4}$$^{+}$, $Ca_{2}$$^{+}$, $Mg_{2}$$^{+}$ and $^{+}$.Mass concentration in Hadan ranged 24.23~57.12 $\mu\textrm{g}$/㎥ and 60.22~72.12 $\mu\textrm{g}$/㎥m Yellow Sand Events. Major cations in Hadan and Anrak site is N $H_{4}$$^{+}$and N $a^{+}$ respectively. SO42$^{[-10]}$ was the abundant specie in the PM 2.5 fraction for Hadan site an dAnrak site. Hadan site showed igher concentration in S $O_{4}$$^{2.1}$ and N $H_{4}$ $^{+}$ In Anrak site the concentration of S $O_{4}$/sip 2-/and N $a^{+}$ was higher than other ions Prominent metallic elements were Fe and Pb in two sites. Principal component analysis showed that main source of PM 2.5 aerosol particles was non-metal related source which was resulted in relating elements as Cr, Ni, and Pb at Hadan site, Anrak site also has resulted PM2.5 aerosol paricles source, which was related its element like Zn, and Ni,. The SAS package analysis also showed that long-range transport effect at Hadan area due to Yellow Sand Event by the prevailing weaterlies.ling weaterlies.

  • PDF

Decentralized Composting of Garbage by a Small Composter for a Dwelling House;V. Field experiment (가정용 소형 퇴비화용기에 의한 부엌쓰레기의 분산식 퇴비화;V. 현장조건에서 퇴비화)

  • Seo, Jeoung-Yoon;Joo, Woo-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.2
    • /
    • pp.179-187
    • /
    • 1996
  • This study was conducted to investigate the possibility of composting of household garbage. The composter with the double layer walls was operated for 60 days in each season. The following results were obtained at the end of the experiment, if the time was not specified. 1) The maximum temperature was $31^{\circ}C$ in spring, $36^{\circ}C$ in summer and $50^{\circ}C$ in winter. 2) The mass was reduced to an average of 58.5%. 3) pH values of the compost were 8.21 in spring, 8.29 in summer and 7.94 in winter. 4) The ash contents were 55.8% in spring, 57% in summer and 73.8% in winter. 5) The nitrogen contents were in the range of $0.2{\sim}5.8%$. Its values were the highest in winter and the lowest in summer. 6) Inorganic contents of the compost were in the range of : $P_2O_5$ ; $1.5{\sim}4.41%$, $K_2O$ ; $0.02{\sim}1.31%$, CaO $0.13{\sim}1.68%$ and MgO $0.05{\sim}1.22%$. 7) Heavy metal contents of the compost were in the range of : Zn ; $13{\sim}89mg/kg$, Cu ; $4{\sim}62mg/kg$, Cd ; $1{\sim}21mg/kg$, Pb ; $N.D.{\sim}97mg/kg$, Cr ; $N.D.{\sim}37$ and Hg ; $N.D.{\sim}1.38mg/kg$.

  • PDF

Vermicomposting of Sludge from Milk Processing Industry (MPS) (지렁이를 이용한 우유가공 폐수처리장 슬러지의 효율적 퇴비화)

  • Seo, Jeoung-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.488-494
    • /
    • 2012
  • This study was conducted to determine the optimal ratio of sludges from milk processing industry (MPS), paper-mill industry (PMS) and night-soil treatment plant (NSS) for vermicomposting. Five different ratios, 0 : 80 : 20 (MPS-0), 25 : 60 : 15 (MPS-25), 50 : 40 : 10 (MPS-50), 75 : 20 : 5 (MPS-75), and 100 : 0 : 0 (MPS-100 : control) MPS : PMS : NSS by wet weight were tested in a small plot experiment. The experiment for each mixing ratio was performed for 2 weeks with the three replications. MPS-100 (100 : 0 : 0) only had the highest decomposition rate with 19.9%, followed by MPS-25, MPS-50, MPS-75 and MPS-0 with 19.5, 19.1, 17.6 and 16.7%, respectively. Except for MPS-100, Vermicomposting resulted in increase in ash, T-P, $NO_2{^-}-N$, $NO_3{^-}-N$, Mg, K, As, Cd and Cu, whereas moisture, VS (Volatile Substance), TKN (Total Kjeldahl Nitrogen), $NH_4{^+}-N$, Ca, Hg and Pb were lower in the final cast than the initial feed mixture. Meanwhile Zn showed very slight difference and Cr and Ni did not show any tendency between the feed mixture and the final cast. In the case of MPS-100, where the decomposition rate was the highest, all the heavy metals in the final cast except for Hg were increased. All the vermicomposts produced from five different mixing ratios of the vermicomposting sludges met the Korea Standard as by-product compost.

Degradation Characteristics of Paper Sludge and Changes of Heavy Metals in Soil (토양중 제지슬러지의 분해 특성 및 중금속 변화)

  • Lee, Hong-Jae;Jeong, In-Ho;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.296-305
    • /
    • 1996
  • Chemical characteristics of paper sludge, degradation of the sludge in soil and $CO_2$ generation, and changes of nitrogen and heavy metals in soil treated with the sludge were investigated. The results obtained was summarized as follows: 1. Degradation rate of paper sludge in soil was 19% at room temperature, and 28% at $incubation(30^{\circ}C)$ temperature after 12-weeks treatment. 2. T-C, T-N and the C/N ratio of the sludge in soil at room temperature were 15.5%, 0.22% and 71 respectively, and 14.5%, 0.24% and 60, respectively, at $incubation(30^{\circ}C)$ temperature after 12-week treatment. 3. $CO_2$ genaration in soil treated with 1%, 3% and 5% of the sludge was 247mg/100g, 334mg/100g and 458mg/100g, respectively, at room temperature, and 385mg/100g, 550mg/100g and 618mg/100g, respectively, at incubation temperature after 12 weeks treatment. 4. Mineralization ratio of organic nitrogen in soil treated with 1%, 3% and 5% of the sludge was 8.7%, 13.4% and 16.2%, respectively, at $incubation(30^{\circ}C)$ temperature after 12-weeks treatment. 5. The amounts of DTPA-extractable Cu, Cd, Zn, Pb, and Cr in Soil treated with paper sludge were $0.7{\sim}2.2$, $0.1{\sim}0.17$, $1.4{\sim}2.8$, $1.4{\sim}2.8$, and $0{\sim}0.7mg/kg$, respectively. Mean while, those of $HNO_3$ extractable Cu, Cd, Zn, Pb, and Cr were $7.9{\sim}10.0$, $0.6{\sim}0.9$, $17.6{\sim}34.4$, $14.7{\sim}18.5$, and $5.8{\sim}9.0mg/kg$, respectively.

  • PDF