• Title/Summary/Keyword: Cr-Ni Steel

Search Result 284, Processing Time 0.034 seconds

A study on the vacuum brazing of carbon steels to a stainless steel (탄소강과 스테인리스강의 진공브레이징에 관한 연구)

  • 이창동;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1083-1091
    • /
    • 1988
  • Vacuum brazing is the most modern brazing process and is at present, far from being completely understood. By brazing under high vacuum, in an atmosphere free of oxidizing gases, a superior product with greater strength, ductility and uniformity can be obtained. In this study, the influence of brazing parameters such as base metal characteristics, joint clearance and brazing time were described in relation to the metallurgical phenomena and shear strength of vacuum-brazed joints between carbon steels and 304 stainless steel (SUS 304) brazed by copper filler metal. In copper brazing of SUS 304 to a medium carbon steel(M.C.S) the columnar Fe-Cr-Ni-Cu-C alloy structure was formed and grew from the M.C.S side and at the same time, the surface of M.C.S. was decarbonized. The driving force for the formation and growth of columnar structure was the difference of carbon content between base metals. As the joint clearance is narrower and brazing time is longer, the formation and growth of columnar phase and decarburization of carbon steels were more noticeable. Because of decarburization of carbon steels, the shear strength of brazed joints were reduced as the formation of columnar structure was increased.

Creep Crack Growth Properties of Low Pressure Turbine Rotor Steel under Constant Load and Ct

  • Jeong, Soon-Uk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.95-101
    • /
    • 2002
  • The propagation rate(da/dt) prediction parameter and the microstructure properties of creep crack in domestic 3.3NiCrMov steel were investigated at 550$\^{C}$ by using 0.5" CT specimen under constant load(4090N) and constant Ct(300∼4000N/mhr) condition that was maintained during crack growth of 1mm distance. C* usually increased with crack length though load was reduced in order to maintain constant Ct value as crack growth and considerably showed the scatter band, but Ct depended on load line displacement rate and represented a good relation with da/dt. At constant toad and Ct region, crack growth slope was 0.900 and 0.844 each, in the other hand C* slope was 0.480. Fully coalesced area(FCA) ahead of crack tip was increased as Ct value increase to the critical value, and after that value FCA decreased. The average diameter ditribution of cavity in FCA showed the greatest value about 1.5 ㎛ when Ct=2000N/mhr. The increasing of Ct in FCA view point enlarged the size of damage area and the size reached to maximum 800 ㎛ when Ct=2000N/mhr.

Effects of Tempering on Tensile Properties of Medium-Carbon Low-Alloy Steels (중탄소 저합금강의 인장성질에 미치는 템퍼링의 영향)

  • Lee, Young-Kook;Krauss, George
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.4
    • /
    • pp.327-337
    • /
    • 1999
  • A series of Ni-Cr-Mo alloy steels were austenitized, quenched to martensite, and tempered at various temperature and time conditions. Tensile testing was conducted at room temperature with cylindrical specimens, and hardness was measured using Rockwell hardness tester. In the tempering stage I, high strain hardening and yield strength accounted for the high ultimate strength and hardness. In the tempering stage II, strengths and hardness linearly decreased with increasing tempering temperature. Specimens tempered in the temperin stage III showed incipient discontinuous yielding and tensile strengths only slightly higher than yield strengths. Ductilities decreased slightly in specimens tempered in the tempered martensite embrittlement range, and severely decreased in specimens tempered for 10 hours at $500^{\circ}C$ in the temper embrittlement range. Specimens tempered at $600^{\circ}C$ for 10 hours showed recrystallized microstructures, a number of fine dimples, and increased strain hardening, probably due to the precipitation of alloy carbides. The simple formulae for the mechanical properties of these steels were suggested as a function of carbon content and Hollomon-Jaffe tempering parameter.

  • PDF

EFFECTS OF HEAT TREATMENTS ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL PHASE ODS STEELS FOR HIGH TEMPERATURE STRENGTH

  • Noh, Sanghoon;Choi, Byoung-Kwon;Han, Chang-Hee;Kang, Suk Hoon;Jang, Jinsung;Jeong, Yong-Hwan;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.821-826
    • /
    • 2013
  • In the present study, the effects of various heat treatments on the microstructure and mechanical properties of dual phase ODS steels were investigated to enhance the high strength at elevated temperature. Dual phase ODS steels have been designed by the control of ferrite and austenite formers, i.e., Cr, W and Ni, C in Fe-based alloys. The ODS steels were fabricated by mechanical alloying and a hot isostatic pressing process. Heat treatments, including hot rolling-tempering and normalizing-tempering with air- and furnace-cooling, were carefully carried out. It was revealed that the grain size and oxide distributions of the ODS steels can be changed by heat treatment, which significantly affected the strengths at elevated temperature. Therefore, the high temperature strength of dual phase ODS steel can be enhanced by a proper heat treatment process with a good combination of ferrite grains, nano-oxide particles, and grain boundary sliding.

The Effects of Welding Wires on the Weldabilities of API X-100 with Laser-Arc Hybrid Welidng (API X-100의 레이저-아크 하이브리드 용접성에 미치는 용접와이어의 영향)

  • Kim, Sungwook;Lee, Mok-Young
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.7-12
    • /
    • 2014
  • In this study, API-X100 steel pipes were welded with various kinds of welding wires in the laser-arc hybrid welding process. 10kW fiber laser source was combined to MIG arc welding process. API X-100 steel of base metal was of 16.9mm thickness, and butt welding applied. After welding, full penetration weld was acquired by 1-pass welding. A root porosity and the lack of fusion was observed in some welding conditions. By the mixing the melted wire, acicular ferrite, polygonal ferrite, pro-eutectoid, aligned side plate, and bainite structures were observed at the weld metal. From the observation of hybrid weld, unmixed zone had more Ni and Cr. The unmixed zone was a 1/3 area of the weld metal. As the mechanical test of the hybrid welding, tensile test and impact test applied. From the tensile test, all of the welding except SM70S was fractured at the base metal. The result of the impact test at -30 degree C led 60J~320J of the absorbed energy. The result of the low-absorbed energy might be from the coarse equiaxed structures of the weld metal.

Creep Crack Growth Properties of Rotor Steel under Constant Load and $C_t$ Condition (일정하중 및 일정$C_t$에서 로터강의 크리프 균열전파특성)

  • Jeong, Soon-Uk;Lee, Hun-Sik;Kim, Young-Dae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.501-506
    • /
    • 2001
  • The creep crack growth properties in 3.5NiCrMoV steel were investigated at $550^{\circ}C$ by using CT specimen under constant $C_t$ condition that was held during crack growth of 1mm distance. $C_t$ lely on load line displacement rate and $C^*$ usually increase with crack length though load is reduced in order to maintain constant $C_t$ value as crack growth. Fully coalesced area(FCA) ahead of crack tip tend to increase as $C_t$ increase to the critical value, and after that value FCA decrease. For the tertiary creep stage of crack growth test, the most of displacement is due to the steady state creep, except only small part due to the primary creep and other effects. Therefore, tests were mainly interrupted in the tertiary stage to obtain high value of $C_t$. At constant load and $C_t$ region, crack growth slope was 0.900 and 0.844 each, on the other hand $C^*$ slope was 0.480.

  • PDF

Creep Crack Propagation Properties of Rotor Steel under Constant Load and Constant Ct Condition (일정하중 및 일정Ct에서 로터강의 크리프 귤열전파 특성)

  • Jeong, Soon-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.105-111
    • /
    • 2001
  • The creep crack growth properties in 3.3NiCrMoV steel were investigated at 55$0^{\circ}C$ by using CT specimen under constant load and constant Ct condition that was held during crack growth of Imm distance. Ct lelied on load line displacement rate, C*usually increased with crack length though load is reduced in order to maintain constant Ct value as crack growth and appeared scatter band. At constant load and Ct region, crack growth slope was 0.900 and 0.844 each, on the other hand C* slope was 0.480. Fully coalesced area(FCA) ahead of crack tip increased as Ct increase to the critical value, and after that value FCA decreased. For the tertiary creep stage of crack growth test, the most of displacement was due to the steady state creep, except only small part due to the primary creep and other effects. Therefore, tests were mainly interrupted in the tertiary stage to obtain high value of Ct.

  • PDF

On the Manufacture of High Manganese Steel Plate (고(高)망간강(鋼) 판재(板材) 제조(製造)에 대한 연구(硏究))

  • Choi, Ju;Shin, Myung-Chul
    • Applied Microscopy
    • /
    • v.7 no.1
    • /
    • pp.45-49
    • /
    • 1977
  • For obtaining high manganese steel plates, the study has been made on the optimum conditions in melting, forging, rolling and water toughning treatment practices. The optimum water toughning temperature and time was found to be $1030^{\circ}C$ and 30 min. respectively for the plates of 1 mm thickness. The argon atmosphere is very effective for the prevention of decarburization which can be easily occured in open air. There is a close relation between the degree of c 이 d working and the hardess. The greater the cold reduction ratio is, the smaller the grain size is and it results in the increase of hardness. The improvement of tensile and bending properties can be made by the addition of small amount of nickel, chromium and vanadium.

  • PDF

Bone Ingrowth and Enhancement of Bone Bonding Strength at Interface between Bone and HA Coated Stainless Steel (HA 코팅된 스테인레스강과 뼈의 계면에서의 경조직 성장 및 결합력 향상)

  • Kim, C.S.;Kim, S.Y.;Kim, D.H.;Khang, G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.133-136
    • /
    • 1996
  • We investigated how hydroxyapatite (HA) coating onto a porous super stainless steel (S.S.S, 22Cr-20Ni-6Mo-0.25N) affects bone ingrowth in a dog transcortical femoral model. Implants were histologically evaluated after 4 and 48 weeks of implantation, and the bone bonding strength at the bone/implant interface was examined by employing the pull-out test. The direct osseous tissue bonding onto the HA-coated S.S.S was observed, but the uncoated stainless steels had thin fibrous tissue layers. The mean interface strength of the HA-coated S.S.S was 1.5 and 2.5 times greater than those of the S.S.S and the 316L SS after one year of implantation, respectively. In preliminary studies, no toxic responce was observed from a cytotoxicity test of the S.S.S, having similar corrosion resistance to titanium. Our results suggest that early osteoconductive nature of HA coating may induce long term osteointegration for a bioinert substrate.

  • PDF

Effect of heat treatment on mechanical properties of overlay welds (육성 용접부의 기계적 성질에 미치는 열처리조건의 영향)

  • 이기호;김기철;윤의박
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.30-37
    • /
    • 1989
  • Effect of heat treatment on mechanical properties of an overlay weldment was investigated. Over welding was carried out on the structural C-Mn mild steel substrate to take required test specimens. Shielded metal arc welding process with 13Cr-0.2Ni stick electrode was applied. The heat treatment temperatures and holding times were $450{\circ}C., 550{\circ}C., 650{\circ}C., 750{\circ}C., 850{\circ}C.$ and 0.5hr, 2hr, 10hr, respectively. Mechanical tests and microscopic inspection were also carried out to investigate welds soundness. Test results indicated that carbon migration was dominant near bonded zone. At temperature of around 650.deg. C, carburized layer and decarburized layer were formed remarkably along overlay welds region and C-Mn mild steel region, respectively. The wideth of these layers became wider with increasing heat treatment temperature and/or holding time at the elevated temperature, and this relationship agreed with Larson-Miller parameter. Side bending test results demonstrated that the crack free region of overlay welds could be deduced from the relationship between temperature and holding time.

  • PDF