• Title/Summary/Keyword: Cr layer

Search Result 818, Processing Time 0.03 seconds

Evaluation of Wear Characteristics on Ti/Cr PVD Coatings of Cold Press Die for the Forming of UHSS (초고장력강판 성형용 냉간 프레스 금형의 Ti/Cr계 PVD코팅에 대한 마모 특성 평가)

  • Heo, J.Y.;Youn, K.T.;Song, J.S.;Kang, I.S.;Yoon, I.C.;Park, C.D.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.186-193
    • /
    • 2022
  • The application of UHSS sheet is being expanded up to 50% to reduce the weight of automobiles and improve safety. However, due to the high strength and low elongation of the ultra-high tensile strength steel sheet, product defects such as spring back and mold defects such as cracks and chippings also occur. In this study, Pin/Ring on Disc and Spiral wear tests were conducted to evaluate the durability of Ti/Cr-coated molds for forming 1.2GPa grade UHSS sheets. Component analysis and thickness were measured for each coating layer, and hardness and adhesion were investigated to determine mechanical properties. Combining the results of various wear tests, it was found that the TiAlN coating had the best wear and sticking resistance.

Pollution of Heavy Metals and Sedimentation Rates in Sediment Cores from the Chinhae Bay, Korea (진해만 퇴적물의 퇴적속도와 중금속 오염)

  • Yang, Han-Soeb;kim, Seong-Soo;Kim, Gue-Buem
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.103-103
    • /
    • 1995
  • In the Chinhae Bay, Korea, sedimentation rates and sedimentary record of anthropogenic metal loads were determined by $^{210}Pb$ dating and heavy metal analysis of four sediment cores . The sedimentation rates varied from 0.16g/$cm^2$/yr(3.1mm/yr) at Sta. Ct, located within narrow waterway to 0.24g/$cm^2$/yr(4.8mm/yr) at Sta. Cl, located in Haengam Bay. Maximum contents of Mn, Zn, Cu and Cr were observed at Sta. C2 located near the mouth of Masan Bay, while minimum contents were observed at Sta. CB. Mn/Fe ratios at Sta. C2 and Sta. C4 showed gradually increasing and decreasing downward, respectively, in the upper layer of sediment cores. This suggests that Mn may be diagenetically redistributed in highly reduced environment. At Sta. C2, the concentrations of Zn and Cu began to increase from 1920s by anthropogenic input and have been remarkablely increasing since mid 1960s. At Sta. C3, located near Sungpo, anthropogenic input of these two elements has also slightly increased after 1970s. However, pollution of these two elements was not significant in Haengam Bay(Sta. Cl) and Chiljun watenway(Sta. C4). The pollution of Co, Ni and Cr was not remarkable in all core samples except surface sediment of Sta. C2. The total input of anthropogenic Zn and Cu since 1920s was estimated to be 28∼792 ㎍/cm2 and 0∼168㎍/cm2, respectively. Sta. C2 showed remarkablely higher values relative to other stations: anthropogenic loads of Zn and Cu constituted 27% and 29% of the total sedimentary inventories at the present day, respectively. Fe, Ni, Cr and Co contents showed good correlation(r>0.8) with each other. Anthropogenic Zn and Cu also showed a very good positive correlation(>0.9). However, correlation between these two group of element was quite scattered, indicating different sources and geochemical behaviors.

Pollution of Heavy Metals and Sedimentation Rates in Sediment Cores from the Chinhae Bay, Korea (진해만 퇴적물의 퇴적속도와 중금속 오염)

  • Yang, Han-Soeb;kim, Seong-Soo;Kim, Gue-Buem
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.489-500
    • /
    • 1995
  • In the Chinhae Bay, Korea, sedimentation rates and sedimentary record of anthropogenic metal loads were determined by $^{210}Pb$ dating and heavy metal analysis of four sediment cores . The sedimentation rates varied from 0.16g/$cm^2$/yr(3.1mm/yr) at Sta. Ct, located within narrow waterway to 0.24g/$cm^2$/yr(4.8mm/yr) at Sta. Cl, located in Haengam Bay. Maximum contents of Mn, Zn, Cu and Cr were observed at Sta. C2 located near the mouth of Masan Bay, while minimum contents were observed at Sta. CB. Mn/Fe ratios at Sta. C2 and Sta. C4 showed gradually increasing and decreasing downward, respectively, in the upper layer of sediment cores. This suggests that Mn may be diagenetically redistributed in highly reduced environment. At Sta. C2, the concentrations of Zn and Cu began to increase from 1920s by anthropogenic input and have been remarkablely increasing since mid 1960s. At Sta. C3, located near Sungpo, anthropogenic input of these two elements has also slightly increased after 1970s. However, pollution of these two elements was not significant in Haengam Bay(Sta. Cl) and Chiljun watenway(Sta. C4). The pollution of Co, Ni and Cr was not remarkable in all core samples except surface sediment of Sta. C2. The total input of anthropogenic Zn and Cu since 1920s was estimated to be 28~792 $\mu\textrm{g}$/cm2 and 0~168$\mu\textrm{g}$/cm2, respectively. Sta. C2 showed remarkablely higher values relative to other stations: anthropogenic loads of Zn and Cu constituted 27% and 29% of the total sedimentary inventories at the present day, respectively. Fe, Ni, Cr and Co contents showed good correlation(r>0.8) with each other. Anthropogenic Zn and Cu also showed a very good positive correlation(>0.9). However, correlation between these two group of element was quite scattered, indicating different sources and geochemical behaviors.

  • PDF

Evaluation of Corrosion Fatigue Characteristics of 12Cr Steel Using Backward Radiated Ultrasound (후방복사된 초음파를 이용한 12Cr강 부식 피로특성 평가)

  • Kwon, Sung-Duk;Yoon, Seok-Soo;Song, Sung-Jin;Bae, Dong-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.397-401
    • /
    • 2000
  • The corrosion-fatigue characteristics of the 12Cr steel, which is widely used in fossil power plants as a turbine blade material, are evaluated nondestructively by use of the Rayleigh surface wave. In this study, the frequency dependency of the Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in the aged specimens, and then compared to the corrosion-fatigue characteristics. The width of the backward radiation profile decreases as the increase of the aging temperature, which seems to result from the increase of the effective degrading layer thickness. This parameter also shows an inversely proportionality to the exponent, m, in the Paris law which predicts the crack size increasement due to fatigue. The result observed in this study demonstrates high potential of the backward radiated ultrasound as a tool for the nondestructive evaluation of the corrosion-fatigue characteristics of the aged materials.

  • PDF

Carburization Characteristics of MERT Type KHR-45A Steel in Carbon Rich Environment (Carbon Rich 분위기에서의 KHR45강의 침탄특성 평가 연구)

  • Lim, Jae Kyun;Yang, Gimo;Ihm, Young Eon
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.293-298
    • /
    • 2013
  • In this study, an HP-mod. type(KHR-45A), which is used as a heater tube material in the pyrolysis process, was evaluated for its carburizing properties. It was confirmed from the microstructural observation of the tubes that the volume fraction of carbide increased and that the coarsening of Cr-carbide generated as a degree of carburization increased. The depth of the hardened layer, which is similar to the thickness of the carburized region of each specimen, due to carburization is confirmed by measurement of the micro-Vickers hardness of the cross section tube, which thickness is similar to that of the carburized region of each specimen. Two types of chromium carbides were identified from the EBSD (electron back-scattered diffraction) image and the EDS (energy-dispersive spectroscopy) analysis: Cr-rich $M_{23}C_6$ in the outer region and Cr-rich $M_7C_3$ in the inner region of tubes. The EDS analysis revealed a correlation between the ferromagnetic behavior of the tubes and the chromium depletion in the matrix. The chromium depletion in the austenite matrix is the main cause of the magnetization of the carburized tube. The method used currently for the measurement of the carburization of the tubes is confirmed; carburizing evaluation is useful for magnetic flux density measurement. The volume fraction of the carbide increased as the measuring point moved into the carburized side; this was determined from the calculation of the volume fraction in the cross-section image of the tubes. These results are similar to the trends of carburization measurement when those trends were evaluated by measurement of the magnetic flux density.

Oxidation Properties of Cobalt Protective Coatings on STS 444 of Metallic Interconnects for Solid Oxide Fuel Cells (고체산화물 연료전지 금속연결재용 STS 444의 코발트 보호막 산화 특성)

  • Hong, Jong-Eun;Lim, Tak-Hyung;Lee, Seung-Bok;Yoo, Young-Sung;Song, Rak-Hyun;Shin, Dong-Ryul;Lee, Dok-Yol
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.6
    • /
    • pp.455-463
    • /
    • 2009
  • 코발트 보호막 코팅이 적용된 페라이트계 스테인리스 스틸인 STS 430과 STS 444 소재에 대해 고체산화물 연료전지용 금속연결재로서의 고온 산화 특성에 대해 살펴보았다. 코발트 코팅층은 $800^{\circ}C$ 고온 산화 후 코발트 산화물 및 $Co_2CrO_4$, $CoCr_2O_4$, $CoCrFeO_4$ 등과 같은 코발트가 함유된 스피넬 상을 형성하였다. 또한 페라이트계 스테인리스 스틸과 코발트 코팅의 계면에서 크롬과 철이 함유된 치밀한 산화층을 형성하여 금속연결재 표면의 스케일 성장속도를 감소시키고 금속연결재 내에 함유된 크롬의 외부 확산을 효과적으로 억제하였다. 한편 STS 430은 고온 산화 후 표면에 형성된 스케일 하부에 $SiO_2$와 같은 내부 산화물이 형성된 반면 STS 444는 표면 스케일 이외에 다른 내부 산화물은 확인되지 않았으며 고온에서의 면저항 측정 결과, 코발트가 코팅된 STS 444의 전기 전도성이 STS 430 보다 우수한 것으로 나타났다.

Adsorption Behaviors of Metal Elements onto Illite and Halloysite (일라이트, 할로이사이트에 대한 중금속 원소의 흡착특성)

  • 추창오;김수진;정찬호;김천수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.20-31
    • /
    • 1998
  • Adsorption of metal elements onto illite and halloysite was investigated at $25^{\circ}C$ using pollutant water collected from the gold-bearing metal mine. Incipient solution of pH 3.19 was reacted with clay minerals as a function of time: 10 minute, 30 minute, 1 hour, 12 hour, 24 hour, 1 day, 2 day, 1 week, and 2 week. Twenty-seven cations and six anions from solutions were analyzed by AAs (atomic absorption spectrometer), ICP(induced-coupled plasma), and IC (ion chromatography). Speciation and saturation index of solutions were calculated by WATEQ4F and MINTEQA2 codes, indicating that most of metal ions exist as free ions and that there is little difference in chemical species and relative abundances between initial solution and reacted solutions. The adsorption results showed that the adsorption extent of elements varies depending on mineral types and reaction time. As for illite, adsorption after 1 hour-reaction occurs in the order of As>Pb>Ge>Li>Co, Pb, Cr, Ba>Cs for trace elements and Fe>K>Na>Mn>Al>Ca>Si for major elements, respectively. As for halloysite, adsorption after 1 hour-reaction occurs in the order of Cu>Pb>Li>Ge>Cr>Zn>As>Ba>Ti>Cd>Co for trace elements and Fe>K>Mn>Ca>Al>Na>Si for major elements, respectively. After 2 week-reaction, the adsorption occurs in the order of Cu>As>Zn>Li>Ge>Co>Ti>Ba>Ni>Pb>Cr>Cd>Se for trace elements and Fe>K>Mn>Al, Mg>Ca>Na, Si for major elements, respectively. No significant adsorption as well as selectivity was found for anions. Although halloysite has a 1:1 layer structure, its capacity of adsorption is greater than that of illite with 2:1 structure, probably due to its peculiar mineralogical characteristics. According to FTIR (Fourier transform infrared spectroscopy) results, there was no shift in the OH-stretching bond for illite, but the ν1 bond at 3695 cm-1 for halloysite was found to be stronger. In the viewpoint of adsorption, illite is characterized by an inner-sphere complex, whereas halloysite by an outer-sphere complex, respectively. Initial ion activity and dissociation constant of metal elements are regarded as the main factors that control the adsorption behaviors in a natural system containing multicomponents at the acidic condition.

  • PDF

Effect of High Frequency Heat Treatment on the Microstructure and Wear Properties of Ni based Self Fluxing Composite Coating Layer Manufactured by HVOF Spray Process (High Velocity Oxygen Fuel 공정으로 제조된 Ni 계 자용성 복합 코팅 소재의 미세조직과 마모 특성에 미치는 고주파 열처리의 영향)

  • Wi, Dong-Yeol;Ham, Gi-Su;Park, Sun-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.421-431
    • /
    • 2019
  • In this study, the formation, microstructure, and wear properties of Colmonoy 88 (Ni-17W-15Cr-3B-4Si wt.%) + Stellite 1 (Co-32Cr-17W wt.%) coating layers fabricated by high-velocity oxygen fuel (HVOF) spraying are investigated. Colmonoy 88 and Stellite 1 powders were mixed at a ratio of 1:0 and 5:5 vol.%. HVOF sprayed self-fluxing composite coating layers were fabricated using the mixed powder feedstocks. The microstructures and wear properties of the composite coating layers are controlled via a high-frequency heat treatment. The two coating layers are composed of ${\gamma}-Ni$, $Ni_3B$, $W_2B$, and $Cr_{23}C_6$ phases. Co peaks are detected after the addition of Stellite 1 powder. Moreover, the WCrB2 hard phase is detected in all coating layers after the high-frequency heat treatment. Porosities were changed from 0.44% (Colmonoy 88) to 3.89% (Colmonoy 88 + ST#1) as the content of Stellite 1 powder increased. And porosity is denoted as 0.3% or less by inducing high-frequency heat treatment. The wear results confirm that the wear property significantly improves after the high-frequency heat treatment, because of the presence of well-controlled defects in the coating layers. The wear surfaces of the coated layers are observed and a wear mechanism for the Ni-based self-fluxing composite coating layers is proposed.

γ'-Precipitation Free Zone and γ' Rafting Related to Surface Oxidation in Creep Condition of Directionally Solidified CM247LC Superalloy (일방향 응고 CM247LC 초내열합금의 크리프 조건에서 표면 산화와 연계된 γ'-석출 고갈 지역 및 γ' 조대화)

  • Byung Hak Choe;Kwang Soo Choi;Sung Hee Han;Dae Hyun Kim;Jong Kee Ahn;Dong Su Kang;Seong-Moon Seo
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.406-413
    • /
    • 2023
  • This study used optical and scanning electron microscopy to analyze the surface oxidation phenomenon that accompanies a γ'-precipitate free zone in a directional solidified CM247LC high temperature creep specimen. Surface oxidation occurs on nickel-based superalloy gas turbine blades due to high temperature during use. Among the superalloy components, Al and Cr are greatly affected by diffusion and movement, and Al is a major component of the surface oxidation products. This out-diffusion of Al was accompanied by γ' (Ni3Al) deficiency in the matrix, and formed a γ'-precipitate free zone at the boundary of the surface oxide layer. Among the components of CM247LC, Cr and Al related to surface oxidation consist of 8 % and 5.6 %, respectively. When Al, the main component of the γ' precipitation phase, diffused out to the surface, a high content of Cr was observed in these PFZs. This is because the PFZ is made of a high Cr γ phase. Surface oxidation of DS CM247LC was observed in high temperature creep specimens, and γ'-rafting occurred due to stress applied to the creep specimens. However, the stress states applied to the grip and gauge length of the creep specimen were different, and accordingly, different γ'-rafting patterns were observed. Such surface oxidation and PFZ and γ'-rafting are shown to affect CM247LC creep lifetime. Mapping the microstructure and composition of major components such as Al and Cr and their role in surface oxidation, revealed in this study, will be utilized in the development of alloys to improve creep life.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF