• Title/Summary/Keyword: Cr carbide

Search Result 235, Processing Time 0.028 seconds

A Surface Study of 304 and 316 Stainless Steel Oxidized between $300^{\circ}C$ and $500^{\circ}C$ ($300^{\circ}C$$500^{\circ}C$사이에서 산회된 304, 316 스테인리스강의 표면특성)

  • 김경록;이경구;강창석;최답천;이도재
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.43-48
    • /
    • 1999
  • Oxidation behavior of 304 and 316 stainless steels was studied. After solution heat treatment, specimens were polished up to 1$mu \textrm{m}$ using $Al_2O_3$ powder and then subjected to oxidation between $300^{\circ}C$ and 50$0^{\circ}C$ in dry air. TEM and EDS were used for analyzing the components and structure of oxide film. TEM analysis of oxide film revealed that thin amorphous Fe oxide ($Fe_2O_3$) was formed on the top of surface while polycrystalline (Cr, $Fe_2O_3$ was formed below the amorphous Fe oxide layer. The specimens oxidized at $500^{\circ}C$ showed that 316 stainless steel had higher oxidation resistance than 304 stainless steel. These results suggest that Mo component of 316 stainless steel suppresses the formation of Cr carbide which may result in a local Cr depleted area.

  • PDF

Oxidation Behaviors of Nickel-Base Superalloys in High Temperature Steam Environments (고온 수증기 환경에서 Ni기 초합금의 산화특성)

  • Kim, Donghoon;Koo, Jahyun;Kim, Daejong;Yoo, Young-Sung;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.26-33
    • /
    • 2011
  • To evaluate steam oxidation behaviours of Alloy 617 and Haynes 230, oxidation test were performed at $900^{\circ}C$ in steam and $steam+20\;vol.-%\;H_2$ environments. Oxidation rate in steam condition was similar to that in air for Alloy 617, while it was slightly lower for Haynes 230. When hydrogen was added to steam, oxidation rate was enhanced. Isolated $MnTiO_3$ particle were formed on $Cr_2O_3$ oxide layer and sub layer $Cr_2O_3$ were formed in steam and $steam+20\;vol.-%\;H_2$ for Alloy 617. On the other hands, $MnCr_2O_3$ layer were formed on top of $Cr_2O_3$ oxide layer for Haynes 230. The extensive sub layer $Cr_2O_3$ formation was resulted from the oxygen inward diffusion in such environments. When hydrogen was added, the oxide morphology was changed from polygonal to platelet because of the accelerated diffusion of cations under the oxide layer. In addition, decarburized zone was extended as hydrogen participated into the reactions causing carbide dissolution.

HAZ Crack Growth Behavior of Cr-Mo Steel at Elevated Temperature (Cr-Mo강 용접열영향부에서의 고온 균열성장거동 연구)

  • 윤기봉;신규인;정용근;이해무
    • Proceedings of the KWS Conference
    • /
    • 1997.05a
    • /
    • pp.65-68
    • /
    • 1997
  • Fracture behavior of ex-serviced 1Cr-0.5Mo steel was measured at room(24$^{\circ}C$) and elevated(538$^{\circ}C$) temperature and compared with that measured with virgin 1Cr-0.5Mo steel. Compact C(T) specimens were machined from the base and welded test materials. In case of the C(T) specimens of the weld, fatigue precrack was introduced along the fusion line so that a crack growth should occur along the region of heat affected zone. It was observed that the J-R curve of the serviced material was significantly lower than that of the virgin material at room temperature. Brittle fracture was observed in the serviced material. On the other hand at elevated temperature no noticeable difference was found between the J-R curves of the virgin and the serviced material. The measured J-R curves were also compared with those of the 1.25Cr-0.5Mo steel from other literatures. Optical microscopy and SEM examination of the serviced material reveal the carbide in/along the grain boundary which shows material degradation due to long-term usage.

  • PDF

A Study on Electrochemical Evaluation Method of Toughness Degradation for 12%Cr Steel (II) (12%Cr강 인성열화도의 전기화학적 평가법에 대한 연구(II))

  • Kim, Chang-Hui;Seo, Hyun-Uk;Yoon, Kee-Bong;Park, Ki-Sung;Kim, Seoung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.268-273
    • /
    • 2001
  • Fossil power plants operated in high temperature condition are composed of components such as turbine, boiler, and piping system. Among these components, turbine blades made with 12%Cr steel operate at a temperature above $500^{\circ}C$. Due to the long term service, turbine blades experience material degradation manifested by change in mechanical and microstructural properties. The need to make life assessment and to evaluate material degradation of turbine blade is strongly required but in reality, there is a lack of knowledge in defining failure mechanism and fundamental data for this component. Therefore, in making life assessment of turbine blade, evaluation of material degradation must be a priority. For this purpose, evaluation of toughness degradation is very important. The major cause of toughness degradation in 12Cr turbine blade is reported to be critical corrosion pitting induced by segregation of impurity elements(P etc.), coarsening of carbide, and corrosion, but the of materials for in-service application. In this study, the purpose of research is focused on evaluating toughness degradation with respect to operation time for 12%Cr steel turbine blade under high temperature steam environment and quantitatively detecting the degradation properties which is the cause of toughness degradation by means of non-destructive method, electrochemical polarization.

  • PDF

Depletion of Solid Solution Elements and Change of Carbides in Artificially Aging Heat Treated 2.25CrMo Steel (인공 경년열화 열처리된 2.25CrMo 강에서의 고용원소 고갈 및 탄화물 변화)

  • Byeon, Jal Won;Pyo, S.W.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.70-75
    • /
    • 2002
  • The depletion of solid solution elements from matrix and the change of carbides during artificial aging of 2.25CrMo steel at $630^{\circ}C$ were investigated. The Mo and Cr elements were found to be depleted drastically in the early stage of aging. The change of carbides was confirmed by analyzing the XRD patterns of electrolytically extracted carbides. Four type of carbides, $M_{23}C_6$, $M_3C$, $M_2C$ and $M_6C$, were found to exist in the specimen before aging. The amount of $M_6C$ carbides increased with aging time, while that of $M_3C$ carbides diminished after short aging time.

Effect of High Temperature Degradation on Microstructure and High Temperature Mechanical Properties of Inconel 617 (Inconel 617의 고온열화에 따른 미세구조 및 고온 기계적 특성)

  • Jo, Tae-Sun;Lee, Seung-Ho;Kim, Gil-Su;Kim, Se-Hoon;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.268-272
    • /
    • 2007
  • Inconel 617 is a candidate tube material for high temperature gas-cooled reactors(HTGR). The microstructure and mechanical properties of Inconel 617 were studied after exposure at high temperature($1050^{\circ}C$). The dominant oxide layer was Cr-oxide. The internal oxide and Cr-depleted region were observed below the Cr-oxide layer. The depth of Cr-depleted zone and internal oxide increased with exposure time. The major phases of carbides are $M_{23}C_6\;and\;M_6C$. The composition of $M_{23}C_6\;and\;M_6C$ were determined to be Cr-rich and Mo-rich, respectively. $M_6C$ carbide is more stable than $M_{23}C_6$ at high temperature. From the results of high temperature compression test, there were no significant changes in hardness and yield strength upon increasing exposure time.

A Study on Elevated Temperature Fracture Behavior of Cracks in 1Cr-0.5Mo Steel Weld (1Cr-0.5Mo강 용접부 균열의 고온파괴거동 연구)

  • 신규인;윤기봉;최현창;박재학;이해무
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.45-56
    • /
    • 1997
  • Fracture behavior of ex-serviced 1Cr-0.5Mo steel was measured at room($24^{\circ}C$) and elevated($538^{\circ}C$) temperature and compared with that measured with virgin 1Cr-0.5Mo steel. Compact C(T) specimens were machined from the base and welded test materials. In case of the C(T) specimens of the weld, fatigue precrack was introduced along the fusion line so that following crack growth should occurs along the region of heat affected zone. It was observed that the J-R curve of the serviced material was significantly lower than that of the virgin material at room temperature. Brittle fracture was observed in the serviced material. On the other hand, at elevated temperature no noticeable difference was found between the J-R curves of the virgin and the serviced material. The measured J-R curves were also compared with those of the 1.25Cr-0.5Mo steel obtained from the other literatures. Optical microscopy and SEM examination of the serviced material reveal the carbide in/along the grain boundary which shows material degradation due to long-term usage. An example of application of the measured J-R curves is shown.

  • PDF

Enhancement of Wear Resistance of CoCrNiAlTi Plasma Sprayed Coatings Using Titanium Carbide

  • De-Yong Li;Chul-Hee Lee
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Large drill bits may face high hardness ore and high working pressure when working. To optimize the use effect of large drill bits and prolong the use time, it is necessary to add a layer of pressure-resistant, wear-resistant, and low-friction coating on the surface of the drill bit. In this study, CoCrNiAlTi high-entropy alloy coatings and CoCrNiAlTi (70 wt%)-TiC (30 wt%) composite coatings are successfully prepared on Q235 steel by plasma spraying. The CoCrNiAlTi (70 wt%)-TiC (30 wt%) coating consists of FCC solid solution and a small amount of TiC phase. The effect of TiC on the composition phase, microhardness, and elastic modulus of HEA coating is studied by X-ray diffractometer (XRD) and microhardness tester. The effect of TiC on the friction and wear properties of HEA coatings is investigated using a wear tester. By improving the process parameters, the metallurgical bonding between the coating and the substrate is well combined, and a coating without pores and cracks is obtained. The experimental results confirm that the microhardness, elastic modulus, and wear resistance of CoCrNiAlTi-TiC composite coating are better, and the friction coefficient is lower.

Solution Growth of SiC Single Crystal from Si-Cr-Co Solvent (Si-Cr-Co 용매로부터 SiC 단결정 용액성장)

  • Hyeon, Gwang-Ryong;Tsuchimoto, Naomich;Suzuk, Koki;Kim, Seong-Jong;Taishi, Toshinori
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.113-113
    • /
    • 2018
  • 환경 친화형 전기자동차, 하이브리드 자동차, 전철 등에서는 고내압 및 소형으로 전력손실을 감소시킬 수 있는 파워 디바이스가 필수이다. 최근, 실리콘 카바이드(SiC, silcon carbide)는 기존 실리콘(Si)보다 스위칭 손실의 저감 및 고온환경에서의 동작 특성이 우수하여, 차세대 저 손실 전력반도체 재료로서 기대를 받고 있다. 용액 성장 법에서 고품질 SiC 결정을 만들 수 있다. 그러나 늦은 성장 속도 때문에 SiC의 양산을 어렵게 하고 있다. 현재까지 성장 속도 향상을 위한 Si용매에 Cr을 첨가하여 탄소 용해도를 높이는 방법이 사용되고 안정된 성장을 위한 Si-Cr용매에 Al를 첨가하는 등 다양한 금속을 첨가하는 방법이 이용되고 있다. 선행 연구에서는 다양한 용매인 탄소 용해도를 실측하고 특히 큰 탄소 용해도를 보인 것은 Co이었다. 본 연구에서는 $Si_{0.6}Cr_{0.4}$원료와 Co를 첨가한 $Si_{0.56}Cr_{0.4}Co_{0.04}$의 용매에 의한 SiC용액 성장을 실시하고 결정 성장 속도 및 표면 상태의 변화를 검토했다. on-axis 4H-SiC(000-1)을 사용한 Top-seeded solution growth(TSSG)법과 원자 비율로 $Si_{0.6}Cr_{0.4}$$Si_{0.56}Cr_{0.4}Co_{0.04}$의 용매를 이용하여 SiC 용액 성장을 실시했다. Ar가스에서 저항 가열로 내를 치환 후에 $1800^{\circ}C$까지 가열하고 종자화 후에 120분간 유지하고 결정 성장을 실시했다. 냉각 후에 성장의 표면에 남은 용매를 $HF+HNO_3$에서 제거했다. 광학 현미경을 이용하여 결정면과 두께를 관찰 측정했다. Co를 첨가한 $Si_{0.56}Cr_{0.4}Co_{0.04}$의 경우는 $Si_{0.6}Cr_{0.4}$의 경우보다 결정 성장 속도가 향상됐다. 또한 $Si_{0.6}Cr_{0.4}$보다 step-flow의 성장을 나타낸 결정의 표면이 전반적으로 관찰됐으며 안정된 결정성장을 나타냈다. 본 연구에서 실시한 연구 방법과 결과는 고품질 및 고속의 SiC 용액성장을 위한 매우 유용한 자료로 활용 될 수 있을 것으로 판단한다.

  • PDF

Effects of Ni and Cr Contents on the Fracture Toughness of Ni-Mo-Cr Low Alloy Steels in the Transition Temperature Region (Ni-Mo-Cr계 저합금강의 천이온도영역에서의 파괴인성에 미치는 Ni 및 Cr 함량의 영향)

  • Lee, Ki-Hyoung;Park, Sang-Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.533-541
    • /
    • 2009
  • Materials used for a reactor pressure vessel(RPV) are required high strength and toughness, which determine the safety margin and life of a reactor. Ni-Mo-Cr low alloy steel shows better mechanical properties than existing RPV steels due to higher Ni and Cr contents compared to the existing RPV steels. The present study focuses on effects of Ni, Cr contents on the cleavage fracture toughness of Ni-Mo-Cr low alloy steels in the transition temperature region. The fracture toughness was characterized by a 3-point bend test of precracked Charpy V-notch(PCVN) specimens based on ASTM E1921-08. The test results indicated that the fracture toughness was considerably improved with an increase of Ni and Cr contents. Especially, control of Cr content was more effective in improving fracture toughness than manipulating Ni content, though Charpy impact toughness was changed more extensively by adjusting Ni content. These differences between changes in the fracture toughness and that in the impact toughness were derived from microstructural features, such as martensite lath size and carbide precipitation behavior.