• Title/Summary/Keyword: Cr alloying

Search Result 182, Processing Time 0.024 seconds

Oxygen Removal during Sintering of Steels Prepared from Cr-Mo and Mo Prealloyed Powders

  • Danninger, Herbert;Xu, Chen;Lindqvist, Bjorn
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.814-815
    • /
    • 2006
  • The removal of oxygen during sintering by carbothermic reduction was studied for steel compacts Fe-Cr-Mo-C and Fe-Mo-C prepared from prealloyed powders. The compacts were prepared by pressing at 600 and 1000 MPa and sintering at 1100 and $1300^{\circ}C$ in vacuum. It showed that for the Cr-Mo steel, deoxidation strongly depends on the sintering temperature, in contrast to the plain Mo steel; at $1300^{\circ}C$ very low oxygen levels were measured with the standard density compact while at high density still significant oxygen is contained. This indicates inhibition of final deoxidation by pore closure, but apparently without adverse effect on the mechanical properties.

  • PDF

Effects of alloy elements on electrochemical characteristics improvement of stainless steel in sea water (해수환경하에서 스테인리스강의 전기화학적 특성 개선을 위한 합금원소의 영향)

  • Lee, Jung-Hyung;Choi, Yong-Won;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.890-899
    • /
    • 2014
  • Austenitic stainless steel is widely used in various industries due to its excellent corrosion resistance. However, Cr carbides precipitation along the grain boundaries after heat treatment or welding may develop Cr depleted zone, which acts as a preferential site for intergranular corrosion attack. To resolve this, carbon stabilizing element such as Ti or Nb are added to suppress formation of Cr carbides. However, there are few reports on corrosion characteristics under seawater environment of the stabilized stainless steel. This study investigated the effects of alloying contents on the electrochemical characteristics in seawater of stainless steel containing stabilizing element(Ti and Nb). To achieve this, the changes on the microstructure due to alloying were observed with microscope, and the electrochemical characteristics were determined by measurement of natural potential and potentiodynamic polarization experiments. The microscopic observation revealed that all specimens had inclusions other than the austenite matrix phase due to the addition of alloying elements. Such inclusions are considered to have different electrochemical characteristics from those of the matrix, and thus a clear distinction was found according to the type of stabilizers and the contents. The results of this study suggest that it is important to consider the effects of alloying contents on the electrochemical characteristics in seawater with the addition of Ti or Nb into austenitic stainless steel.

Effect of Cr Addition on the High Temperature Deformation Behavior of Fe-Al Intermetallics (Fe-Al 금속간 화합물의 고온변형거동에 미치는 Cr 첨가의 효과)

  • Bang W.;Lim H. T.;Ha T. K.;Song J. H.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.167-171
    • /
    • 2001
  • High temperature deformation behavior of Fe-28Al-5Cr alloy has been investigated known to show anomalous temperature dependence of yield strength. Specifically, the effect of Cr addition has been examined. A series of tensile and load relaxation tests have been carried out to obtain the flow behavior of Fe-28Al-5Cr alloy at the elevated temperatures. The flow curves have then been analyzed using the inelastic deformation theory recently proposed. Firstly, high temperature flow stress of iron aluminides can be resolved into internal stress and frictional stress. Secondly, the temperature corresponding to peak strength gets higher level at faster strain rate, which presumably due to the increased contribution of internal stress in observed flow stress. And thirdly, the alloying of Cr seems to cause solid-solution strengthening of frictional stress level and the elevation of 2nd order transition temperature. In this analogy, Fe-28Al-5Cr exhibits better strength especially at relatively higher temperature and lower strain rate than Fe-28Al.

  • PDF

Effects of Alloying Elements on the Characteristics of Microstructure and High Temperature Oxidation of Cast Austenitic Stainless Steel (오스테나이트 스테인리스 주강의 미세 조직 및 고온 산화 특성에 미치는 합금원소의 영향)

  • Lee, In-Sung;Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, Jung-Suk;Ko, Young-Sang;Kim, Jong-Myoung
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.179-186
    • /
    • 2010
  • To elucidate the effects of alloying elements on the characteristics of microstructure and high temperature oxidation of cast austenitic stainless steel, a thermodynamic calculation, a cyclic oxidation test, a X-ray diffraction, a scanning electron microscopy-back scattered electron, a electron probe microanalysis were conducted. The thermodynamic calculation for the effect of vanadium (V) addition on the formation of various precipitates leads to a decrease of chromium (Cr)-rich $M_{23}C_6$ carbides due to the formation of M (C, N) carbo-nitrides containing V and / or niobium (Nb). The V added alloy increased the resistance to high temperature oxidation due to a decrease of Cr-depleted zone deteriorating the oxidation resistance and due to the V-enriched oxide layer formed in inner oxide layer blocking the outward transport of cations.

Effect of Alloying Elements and Homogenization Treatment on Carbide Formation Behavior in M2 High Speed Steels (합금성분변화와 균질화처리에 따른 M2 고속도강의 탄화물 형성거동)

  • Ha, Tae Kwon;Yang, Eun Ig;Jung, Jae Young;Park, Shin Wha
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.589-597
    • /
    • 2010
  • In the present study, the effect of variation in alloying elements on the carbide formation behavior during casting and homogenization treatment of M2 high speed steels was investigated. M2 high speed steels of various compositions were produced by vacuum induction melting. Contents of C, Cr, W, Mo, and V were varied from the basic composition of 0.8C, 0.3Si, 0.2Mn, 4.0Cr, 6.0W, 5.0Mo, and 2.0V in weight percent. Homogenization treatment at $1150^{\circ}C$ for 1.5 hr followed by furnace cooling was performed on the ingots. Area fraction and chemical compositions of eutectic carbide in as-cast and homogenized ingots were analyzed. Area fraction of eutectic carbide appeared to be higher in the ingots with higher contents of alloying elements the area fraction of eutectic carbide also appeared to be higher on the surface regions than in the center regions of ingots. As a result of the homogenization treatment, $M_2C$ carbide, which was the primary eutectic carbide in the as-cast ingots, decomposed into thermodynamically stable carbides, MC and $M_6C$. The latter carbide was found to be the main one after homogenization. Fine carbides uniformly distributed in the matrix was found to be MC type carbide and coarsened by homogenization.

Semiconductor Behavior of Passive Films Formed on Cr with Various Additive Elements

  • Tsuchiya, Hiroaki;Fujimoto, Shinji;Shibata, Toshio
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • Photoelectrochemical response and electrochemical impedance behavior was investigated for passive film formed on sputter-deposited Cr alloy in $0.1kmol{\cdot}m^{-3}$. Photoelectrochemical action spectrum could be separated into two components, which were considered to be derived from $Cr_2O_3$ ($E_g\sim3.6eV$) and $ Cr(OH)_3 $ ($E_g\sim2.5eV$). The band gap energy, $E_g$, of each component was almost constant for various applied potentials. polarization periods and alloying additives. The photoelectrochemical response showed negative photo current for most potentials in the passive region. Therefore, the photo current apparently exhibited p-typesemiconductor behavior. On the other hand, Mort-Schottky plot of the capacitance showed positive slope, which means that passive film formed on Cr alloy has n-type semiconductor property. These apparently conflicting results are rationally explained assuming that the passive film on Cr alloy formed in the acid solution has n-type semiconductor property with a fairly deep donor level in the band gap and forms an accumulation layer in the most of potential region in the passive state.

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.125-137
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

  • PDF

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.625-625
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.