• Title/Summary/Keyword: Cr alloying

Search Result 182, Processing Time 0.025 seconds

The Effect of Alloying Elements and Heat Treatment on the Pitting Corrosion of 440 A Martensitic Stainless Steels (440A 강의 공식부식에 미치는 첨가원소 및 열처리의 영향)

  • Kim, Moo-Gil;Jung, Byong-Ho;Lee, Byoung-Chan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • 440A martensitic stainless steels which were modified with reduced carbon content (${\sim}$0.5%) and addition of small amount of nickel, vanadium, tungsten and molybdenum were manufactured. Effects of alloying elements and heat treatment on the pitting corrosion in 3.5% NaCl were investigated through the electrochemical polarization tests. The lowest pitting potential, $E_p$, was obtained when austenitizing temperature was $1250^{\circ}C$ and this is because of the grain coarsening. When austenitized at $1050^{\circ}C$ and tempered at $350{\sim}750^{\circ}C$, the highest $E_p$ was obtained at $350^{\circ}C$, while the lowest at $450^{\circ}C$ and $550^{\circ}C$ regardless of alloying elements added. But $E_p$ was increased a little at the tempering temperature of $450^{\circ}C$ and $550^{\circ}C$ when 0.4 wt.% of tungsten was added. More pitting was observed at $450{\sim}550^{\circ}C$, and pitting was formed at regions where Cr concentration is low or grain boundaries are intersecting and showed irregular shape.

INFLUENCE OF MECHANICAL ALLOYING ATMOSPHERES ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 15Cr ODS STEELS

  • Noh, Sanghoon;Choi, Byoung-Kwon;Kang, Suk Hoon;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.857-862
    • /
    • 2014
  • Mechanical alloying under various gas atmospheres such as Ar, an Ar-$H_2$ mixture, and He gases were carried out, and its effects on the powder properties, microstructure and mechanical properties of ODS ferritic steels were investigated. Hot isostatic pressing and hot rolling processes were employed to consolidate the ODS steel plates. While the mechanical alloyed powder in He had a high oxygen concentration, a milling in Ar showed fine particle diameters with comparably low oxygen concentration. The microstructural observation revealed that low oxygen concentration contributed to the formation of fine grains and homogeneous oxide particle distribution by the Y-Ti-O complex oxides. A milling in Ar was sufficient to lower the oxygen concentration, and this led a high tensile strength and fracture elongation at a high temperature. It is concluded that the mechanical alloying atmosphere affects oxygen concentration as well as powder particle properties. This leads to a homogeneous grain and oxide particle distribution with excellent creep strength at high temperature.

A Study of Thermodynamical Reaction Path in Fe-Cr-X Alloys at High Temperature Corrosion Environments (고온 부식환경에 대한 Fe-Cr-X 합금의 열역학적 반응경로에 관한 연구)

  • Lee, Byung-Woo;Kim, Woo-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.411-420
    • /
    • 1996
  • The structure of the scale formed on the surface of Fe - Cr - X alloys exposed to 1143K high sulfidation($Ps_2$ = 1.11$\times$$10^-7$ atm, $Po_2$ = 3.11$\times$$10^-20$ atm) or sulfidation/oxidation(($Ps_2$= 1.06$\times$$10^-7$ atm, ($Po_2$ = 3.11$\times$$10^-18$ atm) environment has been observed and analysed using XRD, SEM/EDS. To investigate the possibility of protective film formed on the surface of the alloys, Aluminium, Nickel were selected as alloying elements. Thermodynamic phase stability diagram was used to predict the reaction path of scale formed on Fe - Cr - X alloys. Parabolic rate constant($K_p$) value with 6wt% Al in Fe - 25Cr alloy decreased significantly compared with the Fe - 25Cr alloy without 6wt% Al. Since thin layer of defect free sulfide film, (Al, Cr)Sx, was formed at the alloy/scale interface. Fe - rich sulfide scale at outer layer and Cr - rich sulfide scale containing porosity at inner layer of Fe - 25Cr alloy have been observed. The reaction path for these scales could be predicted by the thermodynamic stability diagram.

  • PDF

Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment (Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향)

  • Kim, Dong Woo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

High Temperature Oxidation of NiCoCrAlY-(Ta, Re, Ir) Coatings for Gas Turbines (가스터빈 엔진부품용 NiCoCrAlY-(Ta, Re, Ir) 코팅의 고온산화특성)

  • Choi, J.H.;Lee, D.B.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.129-136
    • /
    • 2006
  • The high velocity oxy-fuel sprayed coatings of 38Ni-23Co-20Cr-11Al-3Y-5Ta, 25Ni-34Co-20Cr-11Al-3Y-2Re and 32Ni-34.5Co-22Cr-11Al-0.5Ir (in wt%) were oxidized at 1000 and $1100^{\circ}C$ in air in order to find the alloying effect of Ta, Re and Ir on the oxidation properties of the NiCoCrAlY-base coatings. The primary phase of the coatings was $Ni_3Al$. The oxides formed on the coatings consisted primarily of ${\alpha}-Al_2O_3$, together with some $CoCr_2O_4,\;CoAl_2O_4$, and $Al_5Y_3O_{12}$. Tantalum oxidized to $Ta_2O_5$ and $Ta_2O_{22}$. However, no oxides of Re and Ir were detected by XRD owing to their thermodynamic inertness and/or their small amount.

Effect of Thermal History on Pitting Corrosion of High Nitrogen and Low Molybdenum Stainless Steels

  • Kim, Kwangsik;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.75-81
    • /
    • 2003
  • Chromium, molybdenum. and nitrogen are very important alloying elements in stainless steels and its effect was approved in pitting resistance equivalent (PRE) equations and many experimental results. However, Cr can improve the corrosion resistance, but facilitate the formation of sigma phase. Also. Mo has the same effect in stainless steels. If Cr and Mo are added at high amount to increase the corrosion resistance of stainless steel, corrosion resistance in annealed alloys can be improved, but in case of welding or aging heat treatment. its resistance will be drastically decreased. In this work, increasing Cr and N contents but decreasing Mo than the commercial alloys made the experimental alloys. Typical alloys are 25Cr-4.5Mo-0.43N alloy, 27Cr-4.7Mo-0.4N alloy, 27Cr-5.3Mo-0.25N alloy, 32Cr-2.6Mo-0.36N alloy. After annealing and aging heat treatment, microstructures, anodic polarization test, and pitting corrosion test were performed. Annealed alloys showed $100^{\circ}C$ of CPT and aged alloys showed the different tendency depending upon Cr and Mo contents(SFI)

Effect of Al on Structural and Magnetic Characteristics of CoCrFeNiMnAlx High Entropy Alloys

  • Majid Tavoosi;Ali Ghasemi;Gholam Reza Gordani;Mohammad Reza Loghman Estarki
    • Korean Journal of Materials Research
    • /
    • v.33 no.3
    • /
    • pp.95-100
    • /
    • 2023
  • This research examines the effect of adding aluminum on the structural, phasic, and magnetic properties of CoCrFe NiMnAlx high-entropy alloys. To this aim, the arc-melt process was used under an argon atmosphere for preparing cast samples. The phasic, structural, and magnetic properties of the samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrational magnetometry (VSM) analyses. Based on the results, the addition of aluminum to the compound caused changes in the crystalline structure, from FCC solid solution in the CoCrFeNiMn sample to CoCrFeNiMnAl BBC solid solution. It was associated with changes in the magnetic property of CoCrFeNiMnAlx high-entropy alloys, from paramagnetic to ferromagnetic. The maximum saturation magnetization for the CoCrFeNiMnAl casting sample was estimated to be around 79 emu/g. Despite the phase stability of the FCC solid solution with temperature, the solid solution phase formed in the CrCrFeNiMnAl high-entropy compound was not stable, and changed into FCC solid solution with temperature elevation, causing a reduction in saturation magnetization to about 7 emu/g.

A Novel Method to Calculate the Carbides Fraction from Dilatometric Measurements During Cooling in Hot-Work Tool Steel

  • Zhao, Xiaoli;Li, Chuanwei;Han, Lizhan;Gu, Jianfeng
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1193-1201
    • /
    • 2018
  • Dilatometry is a useful technique to obtain experimental data concerning transformation. In this paper, a dilation conversional model was established to calculate carbides fraction in AISI H13 hot-work tool steel based on the measured length changes. After carbides precipitation, the alloy contents in the matrix changed. In the usual models, the content of carbon atoms after precipitation is considered as the only element that affects the lattice constant and the content of the alloy elements such as Cr, Mo, Mn, V are often ignored. In the model introduced in this paper, the alloying elements (Cr, Mo, Mn, V) changes caused by carbides precipitation are incorporated. The carbides were identified using scanning electron microscope and transmission electron microscope. The relationship between lattice constant of carbides and temperature are measured by high-temperature X-ray diffraction. The results indicate that the carbides observed in all specimens cooled at different rates are V-rich MC and Cr-rich $M_{23}C_6$, and most of them are V-rich MC, only very few are Cr-rich $M_{23}C_6$. The model including the effects of substitutional alloying elements shows a good improvement on carbides fraction predictions. In addition, lower cooling rate advances the carbides precipitation for AISI H13 specimens. The results between experiments and mathematical model agree well.

Effects of Si, Mn, and Cr on the dissociation rate of $Fe_3C$. (철탄화물의 분해속도에 미치는 Si, Mn 및 Cr 의 영향)

  • Kim, Dong-Ui
    • Journal of Korea Foundry Society
    • /
    • v.5 no.3
    • /
    • pp.13-18
    • /
    • 1985
  • Decarburization phenomena were investigated at $800^{\circ}C$ by the $PH_2O/PH_2$ + Ar gas mixture in the case iron range which contains Si, Mn and Cr as an alloying elements. Dissociation of cementite in a matrix which contains graphitizer as Si begins at the carbon rich cementite dendrite arms. Several primary austenite $({\gamma})$ skeletons are surrounded by those nucleated graphite nodules, and that forms a limited area of nucleation region. Decarburization reactions at $800^{\circ}C$ in Fe-C, Fe-Mn-C and Fe-Cr-C alloy are followed by parabolic rate law under the gas mixture of $PH_2O/PH_2=0.01$ and the modified rate const. ${\kappa}$ were in the range of $1{\sim}6{\times}10^{-10}cm^2/s$.

  • PDF

Synthesis and Mechanical Properties of $Ti_{25}Cr_8Al_{67}$ Alloy by Mechanical Alloying (기계적 합금화에 의한 $Ti_{25}Cr_8Al_{67}$ 합금의 합성 및 기계적 성질)

  • 이강률
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.231-237
    • /
    • 1995
  • The powder mixtures of Al, Ti and Cr were mechanically alloyed to obtain nanocrystalline powders of $Ti_{25}Cr_8Al_{67}$ composition. Both FCC phase and undissolved metal chromium formed by MA. During the annealing of the MA powders, the phase transition from FCC to ordered $Ll_2$ started at ~$300^{\circ}C$ and was completed below $600^{\circ}C$. As a result of the high-temperature compressive test for the MA powder compacts, the stress-strain curves showed serrated yielding behavior at 400 and $600^{\circ}C$, and softening phenomenon below the strain rate of $5{\times}10^{-3}s^{-1}$ at $800^{\circ}C$. The compressive yield strength as a function of test temperatures showed the nature of the positive-temperature dependence which has the peak temperature around $600^{\circ}C$.

  • PDF