• Title/Summary/Keyword: Cover-image

Search Result 717, Processing Time 0.026 seconds

Atmospheric Aerosol Detection And Its Removal for Satellite Data

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.379-383
    • /
    • 2006
  • Satellite imagery may contain large regions covered with atmospheric aerosol. A highresolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-l/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.

Evaluating the Land Surface Characterization of High-Resolution Middle-Infrared Data for Day and Night Time (고해상도 중적외선 영상자료의 주야간 지표면 식별 특성 평가)

  • Baek, Seung-Gyun;Jang, Dong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.113-125
    • /
    • 2012
  • This research is aimed at evaluating the land surface characterization of KOMPSAT-3A middle infrared (MIR) data. Airborne Hyperspectral Scanner (AHS) data, which has MIR bands with high spatial resolution, were used to assess land surface temperature (LST) retrieval and classification accuracy of MIR bands. Firstly, LST values for daytime and nighttime, which were calculated with AHS thermal infrared (TIR) bands, were compared to digital number of AHS MIR bands. The determination coefficient of AHS band 68 (center wavelength $4.64{\mu}m$) was over 0.74, and was higher than other MIR bands. Secondly, The land cover maps were generated by unsupervised classification methods using the AHS MIR bands. Each class of land cover maps for daytime, such as water, trees, green grass, roads, roofs, was distinguished well. But some classes of land cover maps for nighttime, such as trees versus green grass, roads versus roofs, were not separated. The image classification using the difference images between daytime AHS MIR bands and nighttime AHS MIR bands were conducted to enhance the discrimination ability of land surface for AHS MIR imagery. The classification accuracy of the land cover map for zone 1 and zone 2 was 67.5%, 64.3%, respectively. It was improved by 10% compared to land cover map of daytime AHS MIR bands and night AHS MIR bands. Consequently, new algorithm based on land surface characteristics is required for temperature retrieval of high resolution MIR imagery, and the difference images between daytime and nighttime was considered to enhance the ability of land surface characterization using high resolution MIR data.

Automatic Extraction of the Land Readjustment Paddy for High-level Land Cover Classification (토지 피복 세분류를 위한 경지 정리 논 자동 추출)

  • Yeom, Jun Ho;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.443-450
    • /
    • 2014
  • To fulfill the recent increasement in the public and private demands for various spatial data, the central and local governments started to produce those data. The low-level land cover map has been produced since 2000, yet the production of high-level land covered map has started later in 2010, and recently, a few regions was completed recently. Although many studies have been carried to improve the quality of land that covered in the map, most of them have been focused on the low-level and mid-level classifications. For that reason, the study for high-level classification is still insufficient. Therefore, in this study, we suggested the automatic extraction of land readjustment for paddy land that updated in the mid-level land mapping. At the study, the RapidEye satellite images, which consider efficient to apply in the agricultural field, were used, and the high pass filtering emphasized the outline of paddy field. Also, the binary images of the paddy outlines were generated from the Otsu thresholding. The boundary information of paddy field was extracted from the image-to-map registrations and masking of paddy land cover. Lastly, the snapped edges were linked, as well as the linear features of paddy outlines were extracted by the regional Hough line extraction. The start and end points that were close to each other were linked to complete the paddy field outlines. In fact, the boundary of readjusted paddy fields was able to be extracted efficiently. We could conclude in that this study contributed to the automatic production of a high-level land cover map for paddy fields.

Application of Landsat TM/ETM+ Images to Snow Variations Detection by Volcanic Activities at Southern Volcanic Zone, Chile (Landsat TM/ETM+ 위성영상을 활용한 칠레 Southern Volcanic Zone의 화산과 적설변화와의 상관성 연구)

  • Kim, Jeong-Cheol;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.287-299
    • /
    • 2017
  • The Southern Volcanic Zone (SVZ) of Chile consists of many volcanoes, including the Mt.Villarrica and Mt.Llaima, and the two volcanoes are covered with snow at the top of Mountain. The purpose of this study is to analyze the relationship between the ice caps and the volcanic activity of the two volcanoes for 25 years by using the satellite image data are available in a time series. A total of 60 Landsat-5 TM and Landsat-7 ETM + data were used for the study from September 1986 to February 2011. Using NDSI (Normalized Difference Snow Index) algorithm and SRTM DEM, snow cover and snowline were extracted. Finally, the snow cover area, lower-snowline, and upper-snowline, which are quantitative indicators of snow cover change, were directly or indirectly affected by volcanic activity, were extracted from the satellite images. The results show that the volcanic activity of Villarrica volcano is more than 55% when the snow cover is less than 20 and the lower-snowline is 1,880 m in Llaima volcano. In addition, when the upper-snowline of the two volcanoes is below -170m, it can be confirmed that the volcano is differentiated with a probability of about 90%. Therefore, the changes in volcanic snowfall are closely correlated with volcanic activity, and it is possible to indirectly deduce volcanic activity by monitoring the snow.

Land Cover Classification of the Korean Peninsula Using Linear Spectral Mixture Analysis of MODIS Multi-temporal Data (MODIS 다중시기 영상의 선형분광혼합화소분석을 이용한 한반도 토지피복분류도 구축)

  • Jeong, Seung-Gyu;Park, Chong-Hwa;Kim, Sang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.553-563
    • /
    • 2006
  • This study aims to produce land-cover maps of Korean peninsula using multi-temporal MODIS (Moderate Resolution Imaging Spectroradiometer) imagery. To solve the low spatial resolution of MODIS data and enhance classification accuracy, Linear Spectral Mixture Analysis (LSMA) was employed. LSMA allowed to determine the fraction of each surface type in a pixel and develop vegetation, soil and water fraction images. To eliminate clouds, MVC (Maximum Value Composite) was utilized for vegetation fraction and MinVC (Minimum Value Composite) for soil fraction image respectively. With these images, using ISODATA unsupervised classifier, southern part of Korean peninsula was classified to low and mid level land-cover classes. The results showed that vegetation and soil fraction images reflected phenological characteristics of Korean peninsula. Paddy fields and forest could be easily detected in spring and summer data of the entire peninsula and arable land in North Korea. Secondly, in low level land-cover classification, overall accuracy was 79.94% and Kappa value was 0.70. Classification accuracy of forest (88.12%) and paddy field (85.45%) was higher than that of barren land (60.71%) and grassland (57.14%). In midlevel classification, forest class was sub-divided into deciduous and conifers and field class was sub-divided into paddy and field classes. In mid level, overall accuracy was 82.02% and Kappa value was 0.6986. Classification accuracy of deciduous (86.96%) and paddy (85.38%) were higher than that of conifers (62.50%) and field (77.08%).

Prediction of Land Surface Temperature by Land Cover Type in Urban Area (도시지역에서 토지피복 유형별 지표면 온도 예측 분석)

  • Kim, Geunhan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1975-1984
    • /
    • 2021
  • Urban expansion results in raising the temperature in the city, which can cause social, economic and physical damage. In order to prevent the urban heat island and reduce the urban land surface temperature, it is important to quantify the cooling effect of the features of the urban space. Therefore, in order to understand the relationship between each object of land cover and the land surface temperature in Seoul, the land cover map was classified into 6 classes. And the correlation and multiple regression analysis between land surface temperature and the area of objects, perimeter/area, and normalized difference vegetation index was analyzed. As a result of the analysis, the normalized difference vegetation index showed a high correlation with the land surface temperature. Also, in multiple regression analysis, the normalized difference vegetation index exerted a higher influence on the land surface temperature prediction than other coefficients. However, the explanatory power of the derived models as a result of multiple regression analysis was low. In the future, if continuous monitoring is performed using high-resolution MIR Image from KOMPSAT-3A, it will be possible to improve the explanatory power of the model. By utilizing the relationship between such various land cover types considering vegetation vitality of green areas with that of land surface temperature within urban spaces for urban planning, it is expected to contribute in reducing the land surface temperature in urban spaces.

Automatic Extraction of Training Data Based on Semi-supervised Learning for Time-series Land-cover Mapping (시계열 토지피복도 제작을 위한 준감독학습 기반의 훈련자료 자동 추출)

  • Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.461-469
    • /
    • 2022
  • This paper presents a novel training data extraction approach using semi-supervised learning (SSL)-based classification without the analyst intervention for time-series land-cover mapping. The SSL-based approach first performs initial classification using initial training data obtained from past images including land-cover characteristics similar to the image to be classified. Reliable training data from the initial classification result are then extracted from SSL-based iterative classification using classification uncertainty information and class labels of neighboring pixels as constraints. The potential of the SSL-based training data extraction approach was evaluated from a classification experiment using unmanned aerial vehicle images in croplands. The use of new training data automatically extracted by the proposed SSL approach could significantly alleviate the misclassification in the initial classification result. In particular, isolated pixels were substantially reduced by considering spatial contextual information from adjacent pixels. Consequently, the classification accuracy of the proposed approach was similar to that of classification using manually extracted training data. These results indicate that the SSL-based iterative classification presented in this study could be effectively applied to automatically extract reliable training data for time-series land-cover mapping.

Assessing Techniques for Advancing Land Cover Classification Accuracy through CNN and Transformer Model Integration (CNN 모델과 Transformer 조합을 통한 토지피복 분류 정확도 개선방안 검토)

  • Woo-Dam SIM;Jung-Soo LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.115-127
    • /
    • 2024
  • This research aimed to construct models with various structures based on the Transformer module and to perform land cover classification, thereby examining the applicability of the Transformer module. For the classification of land cover, the Unet model, which has a CNN structure, was selected as the base model, and a total of four deep learning models were constructed by combining both the encoder and decoder parts with the Transformer module. During the training process of the deep learning models, the training was repeated 10 times under the same conditions to evaluate the generalization performance. The evaluation of the classification accuracy of the deep learning models showed that the Model D, which utilized the Transformer module in both the encoder and decoder structures, achieved the highest overall accuracy with an average of approximately 89.4% and a Kappa coefficient average of about 73.2%. In terms of training time, models based on CNN were the most efficient. however, the use of Transformer-based models resulted in an average improvement of 0.5% in classification accuracy based on the Kappa coefficient. It is considered necessary to refine the model by considering various variables such as adjusting hyperparameters and image patch sizes during the integration process with CNN models. A common issue identified in all models during the land cover classification process was the difficulty in detecting small-scale objects. To improve this misclassification phenomenon, it is deemed necessary to explore the use of high-resolution input data and integrate multidimensional data that includes terrain and texture information.

A Study on the Optical Image Method in the Extraction of Surface Cover Information for Hydrologic Analysis (수문해석(水文解析)을 위한 지표정보(地表情報) 추출(抽出)의 광학(光學) 이미지법(法)에 관한 연구(硏究))

  • Yang, In Tae;Chun, Byung Dog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.77-85
    • /
    • 1990
  • This report is a study concerning the classification of the surface cover data applying the data of LANDSAT TM (Thematic Mapper). The purpose of this study was to reduce the cost of use for LANDSAT data and increase the accuracy of land cover classification. Especially, a using mehtod adopted in this paper was a unique optical method using OHP(Over Head Projector). It was found that a unique optical method can have significant effects upon the responses according to the present results in this study.

  • PDF

Product Design Research of Indirect Ceramic Lamp -Focus on Stand Form- (간접 도자 조명등 제품디자인 연구개발 -스탠드형 중심으로-)

  • Kang, Heung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.211-219
    • /
    • 2011
  • The illumination has a meaning of making surroundings brighter. Also, the illumination is a piece of equipment designed to decorate interior space. But the cover materials and designs of the lamp are not variously, in comparison with those of advanced nations. Consequently, this research introduces new styles of the indirect ceramic lamp. The soil is used for making covers of lamps to differ from existing similar lamps. Also, designs of traditional Korean image are used in the part of the cover. The structural part of new illuminating system will be introduced as well. The ceramic lamp with high quality will help to develop a new interior product and it will suffice the demand class who prefers quality goods. With the ceramic covered lamps, the growth of ceramic industrial development will be expected.