• Title/Summary/Keyword: Cover-image

Search Result 715, Processing Time 0.028 seconds

Development of Vision Technology for the Test of Soldering and Pattern Recognition of Camera Back Cover (카메라 Back Cover의 형상인식 및 납땜 검사용 Vision 기술 개발)

  • 장영희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.119-124
    • /
    • 1999
  • This paper presents new approach to technology pattern recognition of camera back cover and test of soldering. In real-time implementing of pattern recognition camera back cover and test of soldering, the MVB-03 vision board has been used. Image can be captured from standard CCD monochrome camera in resolutions up to 640$\times$480 pixels. Various options re available for color cameras, a synchronous camera reset, and linescan cameras. Image processing os performed using Texas Instruments TMS320C31 digital signal processors. Image display is via a standard composite video monitor and supports non-destructive color overlay. System processing is possible using c30 machine code. Application software can be written in Borland C++ or Visual C++

  • PDF

A Machine learning Approach for Knowledge Base Construction Incorporating GIS Data for land Cover Classification of Landsat ETM+ Image (지식 기반 시스템에서 GIS 자료를 활용하기 위한 기계 학습 기법에 관한 연구 - Landsat ETM+ 영상의 토지 피복 분류를 사례로)

  • Kim, Hwa-Hwan;Ku, Cha-Yang
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.5
    • /
    • pp.761-774
    • /
    • 2008
  • Integration of GIS data and human expert knowledge into digital image processing has long been acknowledged as a necessity to improve remote sensing image analysis. We propose inductive machine learning algorithm for GIS data integration and rule-based classification method for land cover classification. Proposed method is tested with a land cover classification of a Landsat ETM+ multispectral image and GIS data layers including elevation, aspect, slope, distance to water bodies, distance to road network, and population density. Decision trees and production rules for land cover classification are generated by C5.0 inductive machine learning algorithm with 350 stratified random point samples. Production rules are used for land cover classification integrated with unsupervised ISODATA classification. Result shows that GIS data layers such as elevation, distance to water bodies and population density can be effectively integrated for rule-based image classification. Intuitive production rules generated by inductive machine learning are easy to understand. Proposed method demonstrates how various GIS data layers can be integrated with remotely sensed imagery in a framework of knowledge base construction to improve land cover classification.

Extraction of Snow Cover Area and Depth Using MODIS Image for 5 River Basins South Korea (MODIS 위성영상을 이용한 국내 5대강 유역 적설분포 및 적설심 추출)

  • Hong, U-Yong;Sin, Hyeong-Jin;Kim, Seong-Jun
    • KCID journal
    • /
    • v.14 no.2
    • /
    • pp.225-235
    • /
    • 2007
  • The shape of streamflow hydrograph during the early period of spring is very much controlled by the area and depth of snow cover especially in mountainous area. When we simulate the streamfolw of a watershed snowmelt, we need some information for snow cover extent and depth distribution as parameters and input data in the hydrological models. The purpose of this study is to suggest an extraction method of snow cover area and snow depth distribution using Terra MODIS image. Snow cover extent for South Korea was extracted for the period of December 2000 and April 2006. For the snow cover area, the snow depth was interpolated using the snow depth data from 69 meteorological observation stations. With these data, it is necessary to run a hydrological model considering the snow-related data and compare the simulated streamflow with the observed data and check the applicability for the snowmelt simulation.

  • PDF

Applications of Image Steganography Using Secret Quantization Ranges (비밀 양자화 범위를 이용한 화상 심층암호 응용)

  • Shin Sang-Uk;Park Young-Ran
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.379-388
    • /
    • 2005
  • Image steganography Is a secret communication scheme to transmit a secret message, which is embedded into an image. The original image and the embedded image are called the cover image and the stego image, respectively. In other words, a sender embeds a secret message into a cover image and transmits a stego image to a receiver, while the receiver takes the stego image, extracts the message from it, and reads the message. General requirements for steganography are great capacity of secret messages, imperceptibility of stego images, and confidentiality between a sender and a receiver. In this paper, we propose a method for being satisfied with three requirements. In order to hide a secret message into a cover image safely, we use a difference value of two consecutive pixels and a secret quantization range. The former is used for the imperceptibility and the latter for the confidentiality. Furthermore, the number of insertion bits is changed according to the difference value for the imperceptibility. Through experiments, we have shown that our method is more good quality of stego images than many other related methods and increases the amount o( message insertion by performing dual insertion processing for some pixels.

  • PDF

Sexual Image of the Cover Models in Men's Magazine (남성 잡지 표지 모델의 섹슈얼 이미지)

  • Yun, Eul-Yo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.275-285
    • /
    • 2010
  • As we enter an era of emotional and endlessly competitive society, there has been a lot of changes happening to the styles and images of men, traditionally associated with strength and power. Today, the media is giving information on today's trendy men's styles and images to meet the growing demand by consumers, and giving appropriate gains in the process to all - both information providers and consumers. Generally speaking, the cover of a magazine represents the concept and image of the magazine. The cover model is closely tied with the symbolic image of the magazine, the current times, and what the general public wants. Therefore, research on the cover models of a lifestyle magazine has significance in that the current style trends will be able to be understood directly. The present research investigated the sexual images of men's magazine cover models. In carrying out the research, the sexual images were classified into the following: homosexual, cross sexual, metro sexual, and uber sexual. The research findings showed that uber sexual is the dominant sexual image in men's magazines in Korea, followed by metro sexual. In conclusion, the findings suggest an expansion of the traditional image of men, happening with the changes in traditional sex roles.

A Study on the Effect of Image Resampling in Land Cover Classification (토지피복분류에 있어서 이미지재배열의 영향에 관한 연구)

  • Yang, In-Tae;Kim, Yeon-Jun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.181-192
    • /
    • 1993
  • Image is composed of the digital numbers including information on natural phenomena, their condition and the kind of objects. Digital numbers change in geometric correction(that is preprocessing). This change of digital numbers gave an effect on results of land-cover classification. We intend to know the influence of resampling as classifying land-cover using the image reconstructed by geometric correction in this paper. Chun-cheon basin was selected the study area having most variable land-cover pattern in North-Han river valley and made on use of RESTEC data resampled in preprocessing. Land-cover is classified as six classes of LEVEL I using maximum likelyhood classification method. We classified land-cover using the image resampled by two methods in this study. Bilinear interpolation method was most accurate in five classes except bear-land in the result of comparing each class with topographic map. We should choose the method of resampling according to the class in which we put the importance in the image resampling of geometric correction. And if we use four-season's image, we may classify more accurately in case of the confusion in case of the confusion in borders of rice field and farm.

  • PDF

Analysis of Land Cover Changes Based on Classification Result Using PlanetScope Satellite Imagery

  • Yoon, Byunghyun;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.671-680
    • /
    • 2018
  • Compared to the imagery produced by traditional satellites, PlanetScope satellite imagery has made it possible to easily capture remotely-sensed imagery every day through dozens or even hundreds of satellites on a relatively small budget. This study aimed to detect changed areas and update a land cover map using a PlanetScope image. To generate a classification map, pixel-based Random Forest (RF) classification was performed by using additional features, such as the Normalized Difference Water Index (NDWI) and the Normalized Difference Vegetation Index (NDVI). The classification result was converted to vector data and compared with the existing land cover map to estimate the changed area. To estimate the accuracy and trends of the changed area, the quantitative quality of the supervised classification result using the PlanetScope image was evaluated first. In addition, the patterns of the changed area that corresponded to the classification result were analyzed using the PlanetScope satellite image. Experimental results found that the PlanetScope image can be used to effectively to detect changed areas on large-scale land cover maps, and supervised classification results can update the changed areas.

The Study on Improving Accuracy of Land Cover Classification using Spectral Library of Hyperspectral Image (초분광영상의 분광라이브러리를 이용한 토지피복분류의 정확도 향상에 관한 연구)

  • Park, Jung-Seo;Seo, Jin-Jae;Go, Je-Woong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.239-251
    • /
    • 2016
  • Hyperspectral image is widely used for land cover classification because it has a number of narrow bands and allow each pixel to include much more information in comparison with previous multi-spectral image. However, Higher spectral resolution of hyperspectral image results in an increase in data volumes and a decrease in noise efficiency. SAM(Spectral Angle Mapping), a method based on vector inner product to compare spectrum distribution, is a highly valuable and popular way to analyze continuous spectrum of hyperspectral image. SAM is shown to be less accurate when it is used to analyze hyperspectral image for land cover classification using spectral library. this inaccuracy is due to the effects of atmosphere. We suggest a decision tree based method to compensate the defect and show that the method improved accuracy of land cover classification.

Performance of Support Vector Machine for Classifying Land Cover in Optical Satellite Images: A Case Study in Delaware River Port Area

  • Ramayanti, Suci;Kim, Bong Chan;Park, Sungjae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1911-1923
    • /
    • 2022
  • The availability of high-resolution satellite images provides precise information without direct observation of the research target. Korea Multi-Purpose Satellite (KOMPSAT), also known as the Arirang satellite, has been developed and utilized for earth observation. The machine learning model was continuously proven as a good classifier in classifying remotely sensed images. This study aimed to compare the performance of the support vector machine (SVM) model in classifying the land cover of the Delaware River port area on high and medium-resolution images. Three optical images, which are KOMPSAT-2, KOMPSAT-3A, and Sentinel-2B, were classified into six land cover classes, including water, road, vegetation, building, vacant, and shadow. The KOMPSAT images are provided by Korea Aerospace Research Institute (KARI), and the Sentinel-2B image was provided by the European Space Agency (ESA). The training samples were manually digitized for each land cover class and considered the reference image. The predicted images were compared to the actual data to obtain the accuracy assessment using a confusion matrix analysis. In addition, the time-consuming training and classifying were recorded to evaluate the model performance. The results showed that the KOMPSAT-3A image has the highest overall accuracy and followed by KOMPSAT-2 and Sentinel-2B results. On the contrary, the model took a long time to classify the higher-resolution image compared to the lower resolution. For that reason, we can conclude that the SVM model performed better in the higher resolution image with the consequence of the longer time-consuming training and classifying data. Thus, this finding might provide consideration for related researchers when selecting satellite imagery for effective and accurate image classification.

A Study on the Land Cover Classification and Facilities Management of Pusan Port using Satellite data (위성영상을 이용한 부산항만 주변지역 토지피복분류 및 시설물관리 구축 방안)

  • 이기철;김정희;이병환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.59-65
    • /
    • 1998
  • A thematic land cover map of Pusan port area was developed using Landsat satellite TM(Thematic Mapper) image. Two types of digital data which are road and sea water layer are extracted from existing paper map were overlayed over the developed land cover map. SPIN-2(KNR-1000) image was utilized to make a facility map of JaSungDae port. SPIN-2 image, which has a cell resolution of 1.56 m showed higer accuracy than TM image, which has a cell resolution of 30 m for facility mapping. Overall, the techniques of digital mapping using satellite image are very useful, effective and efficient.

  • PDF