• Title/Summary/Keyword: Cover-image

Search Result 715, Processing Time 0.32 seconds

Vegetation Mapping of Hawaiian Coastal Lowland Using Remotely Sensed Data (원격탐사 자료를 이용한 하와이 해안지역 식생 분류)

  • Park, Sun-Yurp
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.4
    • /
    • pp.496-507
    • /
    • 2006
  • A hybrid approach integrating both high-resolution and hyperspectral data sets was used to map vegetation cover of a coastal lowland area in the Hawaii Volcanoes National Park. Three common grass species (broomsedge, natal redtop, and pili) and other non-grass species, primarily shrubs, were focused in the study. A 3-step, hybrid approach, combining an unsupervised and a supervised classification schemes, was applied to the vegetation mapping. First, the IKONOS 1-m high-resolution data were classified to create a binary image (vegetated vs. non--vegetated) and converted to 20-meter resolution percent cover vegetation data to match AVIRIS data pixels. Second, the minimum noise fraction (MNF) transformation was used to extract a coherent dimensionality from the original AVIRIS data. Since the grasses and shubs were sparsely distributed and most image pixels were intermingled with lava surfaces, the reflectance component of lava was filtered out with a binary fractional cover analysis assuming that tile total reflectance of a pixel was a linear combination of the reflectance spectra of vegetation and the lava surface. Finally, a supervised approach was used to classify the plant species based on tile maximum likelihood algorithm.

  • PDF

Image Matching Algorithm for Thermal Panorama Image Construction Adaptable for Fire Disasters (화재상황에서 적용가능한 열화상 카메라의 파노라마 촬영을 위한 동일점 추출 알고리즘)

  • Gwak, Dong-Gi;Kim, Dong Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.895-903
    • /
    • 2016
  • In a fire disaster in a tunnel, people should be rescued immediately using the information obtained from cameras or sensors. However, in heavy smoke from a fire, people cannot be clearly identified by a mounted CCTV, which is only effective in a clear environment. A thermal camera can be an alternative to this in smoky situations and is capable of detecting people from their emitted thermal energy. On the other hand, the thermal image camera has a smaller field of view than an ordinary camera due to its lens characteristics and temperature error, etc. In order to cover a relatively wide area, panoramic image construction needs to be implemented. In this work, a template-based similarity matching algorithm for constructing the panorama image is proposed and its performance is verified through experiments. This scheme provides guidelines for coping with difficulty in image construction, which requires an exact correspondence search for two images in cases of heavy smoke.

Research on Equal-resolution Image Hiding Encryption Based on Image Steganography and Computational Ghost Imaging

  • Leihong Zhang;Yiqiang Zhang;Runchu Xu;Yangjun Li;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.270-281
    • /
    • 2024
  • Information-hiding technology is introduced into an optical ghost imaging encryption scheme, which can greatly improve the security of the encryption scheme. However, in the current mainstream research on camouflage ghost imaging encryption, information hiding techniques such as digital watermarking can only hide 1/4 resolution information of a cover image, and most secret images are simple binary images. In this paper, we propose an equal-resolution image-hiding encryption scheme based on deep learning and computational ghost imaging. With the equal-resolution image steganography network based on deep learning (ERIS-Net), we can realize the hiding and extraction of equal-resolution natural images and increase the amount of encrypted information from 25% to 100% when transmitting the same size of secret data. To the best of our knowledge, this paper combines image steganography based on deep learning with optical ghost imaging encryption method for the first time. With deep learning experiments and simulation, the feasibility, security, robustness, and high encryption capacity of this scheme are verified, and a new idea for optical ghost imaging encryption is proposed.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

Land Cover Classification Using Sematic Image Segmentation with Deep Learning (딥러닝 기반의 영상분할을 이용한 토지피복분류)

  • Lee, Seonghyeok;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.279-288
    • /
    • 2019
  • We evaluated the land cover classification performance of SegNet, which features semantic segmentation of aerial imagery. We selected four semantic classes, i.e., urban, farmland, forest, and water areas, and created 2,000 datasets using aerial images and land cover maps. The datasets were divided at a 8:2 ratio into training (1,600) and validation datasets (400); we evaluated validation accuracy after tuning the hyperparameters. SegNet performance was optimal at a batch size of five with 100,000 iterations. When 200 test datasets were subjected to semantic segmentation using the trained SegNet model, the accuracies were farmland 87.89%, forest 87.18%, water 83.66%, and urban regions 82.67%; the overall accuracy was 85.48%. Thus, deep learning-based semantic segmentation can be used to classify land cover.

Construction Method of ECVAM using Land Cover Map and KOMPSAT-3A Image (토지피복지도와 KOMPSAT-3A위성영상을 활용한 환경성평가지도의 구축)

  • Kwon, Hee Sung;Song, Ah Ram;Jung, Se Jung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.367-380
    • /
    • 2022
  • In this study, the periodic and simplified update and production way of the ECVAM (Environmental Conservation Value Assessment Map) was presented through the classification of environmental values using KOMPSAT-3A satellite imagery and land cover map. ECVAM is a map that evaluates the environmental value of the country in five stages based on 62 legal evaluation items and 8 environmental and ecological evaluation items, and is provided on two scales: 1:25000 and 1:5000. However, the 1:5000 scale environmental assessment map is being produced and serviced with a slow renewal cycle of one year due to various constraints such as the absence of reference materials and different production years. Therefore, in this study, one of the deep learning techniques, KOMPSAT-3A satellite image, SI (Spectral Indices), and land cover map were used to conduct this study to confirm the possibility of establishing an environmental assessment map. As a result, the accuracy was calculated to be 87.25% and 85.88%, respectively. Through the results of the study, it was possible to confirm the possibility of constructing an environmental assessment map using satellite imagery, optical index, and land cover classification.

Image Watermarking Algorithm using Spatial Encryption (공간적 암호화를 사용하는 영상 워터마킹 기법)

  • Jung, Soo-Mok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.485-488
    • /
    • 2020
  • In this paper, a technique for securely concealing the watermark, which is intellectual property information, in the image pixel LSB using spatial encryption is proposed. The proposed watermarking technique can be effectively used to protect intellectual property of images. The proposed technique can be used to extract watermark without loss from the stego-image, which is a hidden image of spatially encrypted watermark. The experimental results confirmed the superiority of the proposed technique. As a result of performing watermarking using the proposed technique, the image quality of the stego-image is higher than 51 dB, so humans cannot visually recognize the presence of a watermark. Due to the watermark is spatially encrypted, the security of the watermark is excellent.

Selecting Optimal Basis Function with Energy Parameter in Image Classification Based on Wavelet Coefficients

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.437-444
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have tried to enhance classification accuracy. Previous studies have shown that the classification technique based on wavelet transform is more effective than traditional techniques based on original pixel values, especially in complicated imagery. Various basis functions such as Haar, daubechies, coiflets and symlets are mainly used in 20 image processing based on wavelet transform. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we first computed the wavelet coefficients of satellite image using ten different basis functions, and then classified images. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis functions. The energy parameters of wavelet detail bands and overall accuracy are clearly correlated. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

Exploratory Study on the Relationship between Korean Drama Watching Satisfaction and Korean Product Purchase Intention : Focused on Myanmar Consumers (한국 드라마 시청 만족도와 한국 상품구매의사간 관계에 관한 탐색적 연구 : 미얀마 소비자를 중심으로)

  • Sung-Tae Ma;Hyun-Yong Park;Young-Jun Choi
    • Korea Trade Review
    • /
    • v.45 no.1
    • /
    • pp.301-319
    • /
    • 2020
  • This study aims to explore the positive impact of Korean drama watching satisfaction on purchase intention for Korean products by considering the mediating roles of social distance to Korea, national image of Korea, and Korean product image. This study identified that Korean drama reduced the social distance to Korea while increasing the positive image of Koreas and Korean products. However, the reduced social distance was not positively associated with Korean product image and Korean product purchase intention. This implies that Korean dramas directly affect Korean product purchase intension and indirectly affect Korean national image and product image. This study supplies guidance to international marketers who aims to enter the Myanmar market. To use the Korean wave as a Korean product marketing tool, marketing strategies need to cover Korean culture-relevant materials such as cultural background, cultural characteristics, exposed products, and so on.

Land-cover Change detection on Korean Peninsula using NOAA AVHRR data (NOAA AVHRR 자료를 이용한 한반도 토지피복 변화 연구)

  • 김의홍;이석민
    • Spatial Information Research
    • /
    • v.4 no.1
    • /
    • pp.13-20
    • /
    • 1996
  • This study has been on detection of land-cover change on Korean peninsula (including the area of north Korean territory) between May of 1990 year and that of 1995 year using NOAA AVHRR data. It was necessary that imagery data should be registered to each other and should not be deviated much in seasonal variation in order to recognize land - cover change. Atmosphic effect such as clould and dirt was erased by maximum NDVI(Normalized Difference Vegetation Index) method the equation of which was as following $$NDVI(i,j,d)=\frac{ch2(j,j,d)-ch1(i,j,d)}{ch2(i,j,d)+ch1(i.j,d)}$$ Each image of maximum NDVI of '90 year and '95 year was c1assifed onto 8 categories ,using iso-clustering method each of which was water, wet barren and urban, crop field, field, mixed vegetation, shrub, forest and evergreen.

  • PDF