This study has regard to classification by using multi-temporal SAR data. Multi-temporal JERS-1 SAR images are used for extract the land cover information and possibility. So far, land cover information extracted by high resolution aerial photo, satellite images, and field survey. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then extracted land cover information factors, so on. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass.
The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat + ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by National Geographic Information based on aerial photograph and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The classification result by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.
Forests are crucial for ecosystem stability, societal advancement, and subsistence; however, environmental changes since the 1970s, including shifting agriculture, deforestation, urbanization, increasing human population, and drought, have significantly impacted the region. The purpose of this study was to investigate the status of temporal forest cover changes in the Benchi-Sheko zone in Southwestern Ethiopia. Two types of data were collected: spatial data from satellite images of 1973, 1988, 2003, and 2017, and GPS point data. GIS software, ERDAS version 2015 software, and a handheld GPS were used for data analysis. The data of both GIS from image classification and ERDAS quantification revealed that forest cover decreased from 46,306.17 (92.67%) hectares in 1973 to 27,937.89 (55.91%) hectares in 2017; therefore 18,368.28 hectares (36.76%) decrease in forest cover was detected in the last 44 years by an average annual change of 417.46 hectares and. Based on this, it is recommended that partners working on forest conservation in the locality should enhance local people's awareness to protect forests and forest products in their day-to-day activities.
Since the Industrial Revolution, CO2 levels have been increasing with climate change. In this study, Analyze time-series changes in snow cover quantitatively and predict the vanishing point of snow cover statistically using remote sensing. The study area is Mt. Kilimanjaro, Tanzania. 23 image data of Landsat-5 TM and Landsat-7 ETM+, spanning the 27 years from June 1984 to July 2011, were acquired. For this study, first, atmospheric correction was performed on each image using the COST atmospheric correction model. Second, the snow cover area was extracted using the NDSI (Normalized Difference Snow Index) algorithm. Third, the minimum height of snow cover was determined using SRTM DEM. Finally, the vanishing point of snow cover was predicted using the trend line of a linear function. Analysis was divided using a total of 23 images and 17 images during the dry season. Results show that snow cover area decreased by approximately $6.47km^2$ from $9.01km^2$ to $2.54km^2$, equivalent to a 73% reduction. The minimum height of snow cover increased by approximately 290 m, from 4,603 m to 4,893 m. Using the trend line result shows that the snow cover area decreased by approximately $0.342km^2$ in the dry season and $0.421km^2$ overall each year. In contrast, the annual increase in the minimum height of snow cover was approximately 9.848 m in the dry season and 11.251 m overall. Based on this analysis of vanishing point, there will be no snow cover 2020 at 95% confidence interval. This study can be used to monitor global climate change by providing the change in snow cover area and reference data when studying this area or similar areas in future research.
The Journal of Korean Institute of Communications and Information Sciences
/
v.28
no.1C
/
pp.24-31
/
2003
In this paper, a new opto-digital multiple information hiding and real-time extracting system is implemented. That is, multiple information is hidden in a cover image by using the stego keys which are generated by combined use of random sequence(RS) and Hadamard matrix(HM) and these hidden information is extracted in real-time by using a new optical correlator-based extraction system. In the experiment, 3 kinds of information, English alphabet of "N", "R", "L" having 512$\times$512 pixels, are formulated 8$\times$8 blocks and each of these information is multiplied with the corresponding stego keys having 64$\times$64 pixels one by one. And then, by adding these modulated data to a cover image of "Lena"having 512$\times$512 pixels, a stego image is finally generated. In this paper, as an extraction system, a new optical nonlinear joint transform correlator(NJTC) is introduced to extract the hidden data from a stego image in real-time, in which optical correlation between the stego image and each of the stego keys is performed and from these correlation outputs the hidden data can be asily exacted in real-time. Especially, it is found that the SNRs of the correlation outputs in the proposed optical NJTC-based extraction system has been improved to 7㏈ on average by comparison with those of the conventional JTC system under the condition of having a nonlinear parameter less than k=0.4. This good experimental results might suggest a possibility of implementation of an opto-digital multiple information hiding and real-time extracting system.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.5
/
pp.1938-1962
/
2015
Security of information during transmission is a major issue in this modern era. All of the communicating bodies want confidentiality, integrity, and authenticity of their secret information. Researchers have presented various schemes to cope with these Internet security issues. In this context, both steganography and cryptography can be used effectively. However, major limitation in the existing steganographic methods is the low-quality output stego images, which consequently results in the lack of security. To cope with these issues, we present an efficient method for RGB images based on gray level modification (GLM) and multi-level encryption (MLE). The secret key and secret data is encrypted using MLE algorithm before mapping it to the grey-levels of the cover image. Then, a transposition function is applied on cover image prior to data hiding. The usage of transpose, secret key, MLE, and GLM adds four different levels of security to the proposed algorithm, making it very difficult for a malicious user to extract the original secret information. The proposed method is evaluated both quantitatively and qualitatively. The experimental results, compared with several state-of-the-art algorithms, show that the proposed algorithm not only enhances the quality of stego images but also provides multiple levels of security, which can significantly misguide image steganalysis and makes the attack on this algorithm more challenging.
Soil erosion by rainfall is important factor for basin management because it reduces reservoir capacity and breaks out the contamination of water caused by turbid water. Recently, soil erosion study with GIS is in progress but does not consider soil erosion source area. This study calculated soil erosion amount using GIS-based soil erosion model in Imha basin and examined soil erosion source area using SPOT 5 High-resolution satellite image and land cover map. As a result of analysis, dry field showed high-density soil erosion area and we could easily investigate source area using satellite image. Also we could examine the suitability of soil erosion area by applying field survey method in common areas such as dry field and orchard area those are difficult to confirm soil erosion source area using satellite image.
Journal of the Korean Association of Geographic Information Studies
/
v.24
no.1
/
pp.1-11
/
2021
Detection of surface water features including river, wetland, reservoir from the satellite imagery can be utilized for sustainable management and survey of water resources. This research compared the water indices derived from the multispectral bands and the machine learning technique for detecting the surface water features from he Landsat-8 satellite image acquired in Daegu through the following steps. First, the NDWI(Normalized Difference Water Index) image and the MNDWI(Modified Normalized Difference Water Index) image were separately generated using the multispectral bands of the given Landsat-8 satellite image, and the two binary images were generated from these NDWI and MNDWI images, respectively. Then SVM(Support Vector Machine), the widely used machine learning techniques, were employed to generate the land cover image and the binary image was also generated from the generated land cover image. Finally the error matrices were used for measuring the accuracy of the three binary images for detecting the surface water features. The statistical results showed that the binary image generated from the MNDWI image(84%) had the relatively low accuracy than the binary image generated from the NDWI image(94%) and generated by SVM(96%). And some misclassification errors occurred in all three binary images where the land features were misclassified as the surface water features because of the shadow effects.
Geon-Ung, PARK;Bong-Geun, SONG;Kyung-Hun, PARK;Hung-Kyu, LEE
Journal of the Korean Association of Geographic Information Studies
/
v.25
no.4
/
pp.63-80
/
2022
As a technology to analyze and predict an issue has been developed by constructing real space into virtual space, it is becoming more important to acquire precise spatial information in complex cities. In this study, images were acquired using an unmanned aerial vehicle for urban area with complex landscapes, and land cover classification was performed object-based image analysis and semantic segmentation techniques, which were image classification technique suitable for high-resolution imagery. In addition, based on the imagery collected at the same time, the replicability of land cover classification of each artificial intelligence (AI) model was examined for areas that AI model did not learn. When the AI models are trained on the training site, the land cover classification accuracy is analyzed to be 89.3% for OBIA-RF, 85.0% for OBIA-DNN, and 95.3% for U-Net. When the AI models are applied to the replicability assessment site to evaluate replicability, the accuracy of OBIA-RF decreased by 7%, OBIA-DNN by 2.1% and U-Net by 2.3%. It is found that U-Net, which considers both morphological and spectroscopic characteristics, performs well in land cover classification accuracy and replicability evaluation. As precise spatial information becomes important, the results of this study are expected to contribute to urban environment research as a basic data generation method.
The purpose of this study was to construct land cover maps using a deep learning model and to select the optimal deep learning model for land cover classification by adjusting the dataset such as input image size and Stride application. Two types of deep learning models, the U-net model and the DeeplabV3+ model with an Encoder-Decoder network, were utilized. Also, the combination of the two deep learning models, which is an Ensemble model, was used in this study. The dataset utilized RapidEye satellite images as input images and the label images used Raster images based on the six categories of the land use of Intergovernmental Panel on Climate Change as true value. This study focused on the problem of the quality improvement of the dataset to enhance the accuracy of deep learning model and constructed twelve land cover maps using the combination of three deep learning models (U-net, DeeplabV3+, and Ensemble), two input image sizes (64 × 64 pixel and 256 × 256 pixel), and two Stride application rates (50% and 100%). The evaluation of the accuracy of the label images and the deep learning-based land cover maps showed that the U-net and DeeplabV3+ models had high accuracy, with overall accuracy values of approximately 87.9% and 89.8%, and kappa coefficients of over 72%. In addition, applying the Ensemble and Stride to the deep learning models resulted in a maximum increase of approximately 3% in accuracy and an improvement in the issue of boundary inconsistency, which is a problem associated with Semantic Segmentation based deep learning models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.