• Title/Summary/Keyword: Coupling Agent

Search Result 348, Processing Time 0.029 seconds

Polymeric Humidity Sensor Using Polyelectrolyte Derived from Poly(amide-sulfone)s

  • Jeon, Young-Min;Gong, Myoung-Seon
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.227-231
    • /
    • 2009
  • New polyelectrolytes derived from poly(amide-sulfone)s and 1,5-dibromopentane were simultaneously fabricated on the electrode by the crosslinking reaction. The substrate was pretreated with a bromoalkyl-containing, silane-coupling agent to anchor the humidity-sensitive membrane to the substrate through the covalent bond. When the resistance dependence on the relative humidity of the crosslinked poly(amide-sulfone)s was measured, the resistance varied by three orders of magnitude between 20%RH and 90%RH, which was the required RH range for a humidity sensor operating at ambient humidity. Their water durability, long-term stabilities under various environments, hysteresis and response and recovery times were measured and evaluated as a humidity-sensing membrane.

A Study to Improve the Interface Strength of Composite Materials by the Radiation of Ultrasonic Energy (초음파 조사에 의한 복합재료의 계면특성의 보강 개선에 관한 연구 (II))

  • Lee, Sang-Kook;Jhqun, Choon-Saing;Kim, Ik-Nyon
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.179-182
    • /
    • 1988
  • This study is to investigate the adhesive strength of composite material's interface on the experimental methode of tree growth in the material. The results are as fellows 1) The irradiations of ultrasonic energy cause the mechanical vibration in the polymer composite materials of fluid state, so then bring about physical dispersion and heat form inorganic materials, being supposed to produce chemical crosslinking reaction, decreasing of voids between filler and matrix. 2) The characterics of the breakdown are increased by using coupling agent in the composite material. 3) As the intensity of ultrasonic energy and its irradiated time are larger, the tree inception and break-down voltages increase and the tree growing is slower. so we obtain that the interface adhesive force tan be strengthened by the irradiation of ultrasonic energy.

  • PDF

A Study on the Preparation of New Functionalized Aminosilanes as a promising coupling agent(I) (결합제로서 가능성 있는 새로운 작용기를 갖는 Aminosilane 제조에 관한 연구(I))

  • 한정식;서태석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.23-23
    • /
    • 1998
  • Michael Reaction을 이용하여 상업적으로 이용 가능한 APS(3-aminopropyltrime thoxysilane)과 AEAPS(N-[3-(trimethoxysilyl)propy1] ethylenediamine)을 다수의 Michael acceptor(ethyl acrylate, acrylonitrile, acrylamide, 2-cyanoethyl acrylate, 2-hydroxyethyl acrylate 그리고 3-(trimethoxysilyl)propylmethacrylate)와 반응시켜 10종류의 aminosilane ([3-{N-2-carboethoxyethyl)aminopropyl]triethoxysilane, [3-(N-2-cyanoethyl)aminopropyl] triethoxysilane, [3-(N-di-2-carboethoxyethyl) aminopropyl]triethoxysilane, [3-(N-di-2-cyanoethyl)aminopropyl]triethoxysilane, [3-(N-2-cyanoethoxypropionyl)aminopropyl] triethoxysilane, [3-(N-di-2-cyanoethoxypropionyl)aminopropyl] triethoxysilane, [3-(N-di-2-hydroxyethoxypropionyl) aminopropyl]-triethoxysilane, [3-(N-2-amidoethyl aminopropyl]triethoxysilane, {3-[N-(N-di-2-cyanoethyl)ethyl]aminopropyl)triethoxysilane, {3-[N-(3-trimethoxy-silylpropyl)-2-methylpropionyl]aminopropyl)triethoxysilane 등을 35-70% 수율로 제조하였으며, 이들의 구조는 $^1$H-NMR과 FT-IR spectroscopy를 이용하여 확인하였다.

  • PDF

An Estimation of Life Time in Epoxy composites using Weibull Distribution Equation (와이블 분포식을 이용한 에폭시 복합체의 수명 시간 예측)

  • 신철기;김진사;정일형;임장섭;김태성;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.167-173
    • /
    • 1998
  • In order to estimate the life time of epoxy composites used for modeling material of transformer, the AC breakdown experiments of it were experimented and then the AC breakdown data were also simulated by Weibull distribution equation in this study. The life time of H100F65 specimen was the shortest and it of SH100F65 specimen was the longest, and as the AC voltage was applied to specimen for 50[min], the breakdown probability of each specimen was 31.2[%], 17.00[%], 84.36[%] and 12.35[%], respectively.

  • PDF

Mechanical and Hygroscopic Behaviour of Teak Wood Sawdust Filled Recycled Polypropylene Composites

  • Yadav, Anil Kumar;Srivastava, Rajeev
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.202-208
    • /
    • 2018
  • In this paper, mechanical and hygroscopic properties of teak sawdust and recycled polypropylene (RPP) composites are evaluated and compared with virgin polypropylene (VPP) matrix based composites. Verities of composites are prepared by variation in the plastic types, wood plastic ratio and the addition of coupling agent in the formulations. Mixing of wood sawdust and polypropylene is done by a twin screw extruder, and then sheets of wood plastic composites (WPCs) are produced by using the compression molding method. The results show that recycled matrix composites exhibit better tensile, flexural strength with low impact strength than virgin matrix based composites. Recycled composites show low water absorption and thickness of swelling than virgin matrix based composites. The results confirm that wood content in the polymer matrix affects the performance of composites while presence maleated polypropylene (MAPP) improves the properties of the composites significantly. Developed RPP matrix composites are as useful as VPP matrix composites and have the potential to replace the wood and plastics products without any adverse effect of the plastics on the environment.

Study on the Change of Physical Properties with Silica Contents in Solution Styrene-Butadiene Rubber (SSBR)/Silica Composites

  • Kim, Tae Yeop;Won, Sung Yeon;Kang, Shin Hye;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • The optimum mixing conditions of silica and silane containing rubber composites were evaluated by investigating the properties of rubber composites prepared with a silica composition of 10, 20, 40, 60, and 80 g, respectively. The crosslinking rate decreased with increasing silica content, with he promoters being adsorbed on the silica surface with in the rubber composite. As a result, the increase in crosslinking time resulted in the destruction of the silica structure. The increase of the bound rubber content due to the destruction of the silica structure inhibited the chain motion of the polymer molecules and reduced the cohesion of the silica itself. Finally, the increase of silica content showed the increase of hardness, tensile strength, and storage modulus of rubber composites.

Clinical Guide for Adhesion of Zirconia Restoration (지르코니아 수복물의 접착을 위한 임상 가이드)

  • Hwang, Sung-Wook
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.58-69
    • /
    • 2014
  • In case of esthetic restorative procedure with zirconia restoration, we have to use resin cement because of not only just for retention but also esthetic reason. In such a clinical situation, we have to consider two bonding interfaces, one is tooth surface to resin cement and the other is zirconia surface to resin cement. There is well established bonding protocol between tooth surface to resin cement, but bonding protocol of zirconia surface to resin cement is still controversial. In scientific point of view, there are two mechanism for bonding of zirconia restoration.. One is mechanical retention and the other is chemical adhesion. However, we have three different options for bonding of zirconia restoration in clinical situation; 1) Tribo-chemical coating with silica and silane coupling agent 2) Zirconia primer with phosphate chemistry 3) Self-adhesive resin cement with phosphate chemistry.

Development and Characteristics of a New Insulator between Turns of Superconducting Coil (초전도 Coil의 새로운 turn간 절연재료의 개발 및 특성)

  • 박영욱;이동성;이정원;곽동순;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.26-29
    • /
    • 2002
  • Polyimide-epoxysilane (coupling agent) composites were reacted with oligomeric PDMS, a condensation product of difunctional silane, by a sol-gel process and were then dried into films. And then, the surface, mechanical, and electric properties were measured. The study showed that PDMS existed in the polymide matrix by the use of FT-IR. In the mechanical properties, the maximum elongation and toughness was increased in the polyimide with silane-groups. But the maximum tensile strength was slightly decreased. And the intensive dispersion of the silane-groups on the surface of polyimide was ascertained through XPS measurement. In the electric properties. AC break down voltage was increased by increasing the amount of difunctional silane. This experiment showed that PDMS added polyimide had better mechanical and electric properties than classical materials.

Formation of Quantum Dot Fluorescent Monolayer Film using Peptide Bond

  • Inami, Watau;Nanbu, Koichi;Miyakawa, Atsuo;Kawata, Yoshimasa
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • We present a method for preparing a quantum dot fluorescent monolayer film on a glass substrate. Since nanoparticles aggregate easily, it is difficult to prepare a nanoparticle monolayer film. We have used a covalent bond, the peptide bond, to fix quantum dots on the glass substrate. The surface of the quantum dot was functionalized with carboxyl groups, and the glass substrate was also functionalized with amino groups using a silane coupling agent. The carboxyl group can be strongly coupled to the amino group. We were able to successfully prepare a monolayer film of CdSe quantum dots on the glass substrate.

Properties of Waste Paper Composite (폐지 복합재료의 물성)

  • Kim, Chul-Hyun;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.48-52
    • /
    • 2008
  • Waste paper plastic composites were prepared with old newspaper and old corrugated containers and mixed office waste and those properties were evaluated. The results were summarized as fellows. 1. The strength properties like as tensile and Young's modulus reveled most high level in MOW composite. 2. The coagulation of fibers in paper particle should interrupt equal dispersion of polymer and paper particle. 3. The micrograph of the surface of composites showed the most high dispersion in ONP composite.