• Title/Summary/Keyword: Coupled numerical analysis

Search Result 966, Processing Time 0.277 seconds

Acquisition of Information on Road Cutting Slope Using Digital Imagery (디지털 영상을 이용한 도로 절취사면 정보 획득)

  • Lee, Jong-Chool;Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1937-1943
    • /
    • 2007
  • Given the mountainous nature of Korea, cutting slopes are bound to happen. Every you, slope failures lead to enormous human and material losses. More recently, reckless development and subsequent degradation of forests has brought about soil erosion, which coupled with heavy rainfall, contaminates rivers, raises the level of river bottoms and thereby deteriorates their discharge capacity. In Korea, environmental impact assessments and disaster impact assessments have been conducted to come up with proper countermeasures. In order to perform quantitative analysis for this purpose, reliable slope information is quintessential. This study aims to obtain slope-related digital images using an RC model helicopter with a non-metric camera embedded, and to process these images to gain more accurate slope information. To this end, digital images obtained regarding cutting slopes were processed to gain numerical information of slopes and, on the basis of slope information gained here, reliable soil erosion factors were estimated.

Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.139-160
    • /
    • 2015
  • The global performance of the 5MW OC4 semisubmersible floating wind turbine in random waves was numerically simulated by using the turbine-floater-mooring fully coupled and time-domain dynamic analysis program FAST-CHARM3D. There have been many papers regarding floating offshore wind turbines but the effects of second-order wave-body interactions on their global performance have rarely been studied. The second-order wave forces are actually small compared to the first-order wave forces, but its effect cannot be ignored when the natural frequencies of a floating system are outside the wave-frequency range. In the case of semi-submersible platform, second-order difference-frequency wave-diffraction forces and moments become important since surge/sway and pitch/roll natural frequencies are lower than those of typical incident waves. The computational effort related to the full second-order diffraction calculation is typically very heavy, so in many cases, the simplified approach called Newman's approximation or first-order-wave-force-only are used. However, it needs to be justified against more complete solutions with full QTF (quadratic transfer function), which is a main subject of the present study. The numerically simulated results for the 5MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model test results by Technip/NREL/UMaine. The predicted motions and mooring tensions for two white-noise input-wave spectra agree well against the measure values. In this paper, the numerical static-offset and free-decay tests are also conducted to verify the system stiffness, damping, and natural frequencies against the experimental results. They also agree well to verify that the dynamic system modeling is correct to the details. The performance of the simplified approaches instead of using the full QTF are also tested.

Effect of Groundwater Flow on Ice-wall Integrity (얼음벽 형성에 대한 지하수 흐름의 영향)

  • Shin, Hosung;Kim, Jinwook;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.43-55
    • /
    • 2018
  • AGF (Artificial Ground Freezing) method is a temporary ground improvement method which can apply to all types of soil with the purpose of high stiffness and low hydraulic conductivity. However, the groundwater flow and the heterogeneity of the ground increase the uncertainty of the ice-column formation which hinders the reliability of this method. The effects of groundwater flow and layered heterogeneity on ice-wall integrity by AGF method were analyzed using finite element analysis program for a coupled thermo-hydro phenomena in the freezing ground. Groundwater flow changes circular ice-column into elliptical shapes and increases the time required for the formation of ice walls. The previous theoretical formula overestimated the completion time of the ice wall and the critical groundwater velocity by neglecting the thermal interaction between adjacent ice-columns. Numerical results presented the corrected formula and verified the proposed equation for the dimensionless ice-wall completion time. In the layered heterogeneous ground, the thickness of the layer with higher hydraulic conductivity and its relative magnitude were found to be important factors in the ice-wall completion time and critical velocity.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

A Numerical Analysis to Estimate Disposal Spacing and Rock Mass Condition for High Efficiency Repository Based on Temperature Criteria of Bentonite Buffer (벤토나이트 완충재 설계 기준 온도에 따른 고효율 처분시스템 처분 간격 및 암반 조건 산정을 위한 수치해석적 연구)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Cho, Dongkeun
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.289-308
    • /
    • 2021
  • This study conducts coupled thermo-hydro-mechanical numerical modeling to investigate the maximum temperature and conditions for securing mechanical stability of the high-level radioactive waste repository when temperature criteria of bentonite buffer are 100℃ and 125℃, respectively. In case of temperature criterion of buffer as 100℃, the maximum temperatures at the interface between canister and buffer are calculated to be 99.4℃ and 99.8℃, respectively for a case with disposal tunnel spacing of 40 m and deposition hole spacing of 5.5 m and for the other case with disposal tunnel spacing of 30 m and deposition hole spacing of 6.5 m. In case of temperature criterion of buffer as 125℃, spacings of disposal tunnel and deposition hole could be decreased to 30 m and 4.5 m, respectively, which reduces the disposal area up to 55% compared to the disposal area of KRS+. According to analysis of mechanical stability for various disposal spacings, RMR of rock mass for KRS+ should be larger than 72.4 which belongs to good rock in RMR classification to prevent failure of rock mass. As disposal spacing is decreased, required RMR of rock mass is increased. In order to prevent failure of rock mass for a case with disposal tunnel spacing of 30 m and deposition hole spacing of 4.5 m, RMR larger than 87.3 is needed. However, mechanical stability of the repository is secured for all cases with RMR over 75 considering the enhancement of rock strength due to confining stress induced by swelling of the bentonite buffer and backfill.

Internal Flow Analysis of Urea-SCR System for Passenger Cars Considering Actual Driving Conditions (운전 조건을 고려한 승용차용 요소첨가 선택적 촉매환원장치의 내부 유동 해석에 관한 연구)

  • Moon, Seong Joon;Jo, Nak Won;Oh, Se Doo;Lee, Ho Kil;Park, Kyoung Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.127-138
    • /
    • 2016
  • Diesel vehicles should be equipped with urea-selective catalytic reduction(SCR) system as a high-performance catalyst, in order to reduce harmful nitrogen oxide emissions. In this study, a three-dimensional Eulerian-Lagrangian CFD analysis was used to numerically predict the multiphase flow characteristics of the urea-SCR system, coupled with the chemical reactions of the system's transport phenomena. Then, the numerical spray structure was modified by comparing the results with the measured values from spray visualization, such as the injection velocity, penentration length, spray radius, and sauter mean diameter. In addition, the analysis results were verified by comparison with the removal efficiency of the nitrogen oxide emissions during engine and chassis tests, resulting in accuracy of the relative error of less than 5%. Finally, a verified CFD analysis was used to calculate the interanl flow of the urea-SCR system, thereby analyzing the characteristics of pressure drop and velocity increase, and predicting the uniformity index and overdistribution positions of ammonia.

Numerical Study on the Observational Error of Sea-Surface Winds at leodo Ocean Research Station (수치해석을 이용한 이어도 종합해양과학기지의 해상풍 관측 오차 연구)

  • Yim Jin-Woo;Lee Kyung-Rok;Shim Jae-Seol;Kim Chong-Am
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.189-197
    • /
    • 2006
  • The influence of leodo Ocean Research Station structure to surrounding atmospheric flow is carefully investigated using CFD techniques. Moreover, the validation works of computational results are performed by the comparison with the observed data of leodo Ocean Research station. In this paper, we performed 3-dimensional CAD modelling of the station, generated the grid system for numerical analysis and carried out flow analyses using Navier-Stokes equations coupled with two-equation turbulence model. For suitable free stream conditions of wind speed and direction, the interference of the research station structure on the flow field is predicted. Beside, the computational results are benchmarked by observed data to confirm the accuracy of measured date and reliable data range of each measuring position according to the wind direction. Through the results of this research, now the quantitative evaluation of the error range of interfered gauge data is possible, which is expected to be applied to provide base data of accurate sea surface wind around research stations.

A Study of Governing Factors on the Engineering Behaviour of a Single Pile in Consolidating Ground (압밀이 진행중인 지반에 설치된 말뚝의 공학적 거동을 지배하는 주요인자들에 대한 연구)

  • Kim, Sung-Hee;Jeon, Young-Jin;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.5-16
    • /
    • 2017
  • In the present work, a number of advanced three-dimensional (3D) parametric finite element numerical analyses have been conducted to study the behaviour of a single pile in consolidating ground from coupled consolidation analyses. A single pile with typical minimum and maximum ranges of fill height and clay stiffness has been modelled. The computed results demonstrate that the higher the height of the fill above the clay surface and the smaller the stiffness of the clay, the higher the dragloads and the negative skin friction-induced pile settlements. It has been found that the development of dragloads and pile settlement is more governed by the stiffness of the clay rather than the height of the fill. Positive shaft resistance is mobilised only after the average degree of consolidation is larger than 50%. Although the pile is installed when the degree of consolidation is 50% or more, relatively large negative skin friction can nevertheless develop on the pile. On the other hand, when a load is applied on the pile experiencing an increase in the negative skin friction with time during consolidation, the pile undergoes a large increase in the final settlement of up to 95% compared to that of a pile without axial load on the pile head. The allowable pile capacity when there is negative skin friction on the pile is reduced by about 4-11% compared to a pile without negative skin friction.

Model Trajectory Simulation for the Behavior of the Namgang Dam Water in the Kangjin Bay, South Sea, Korea (남해 강진만에서 남강댐 방류수의 거동 특성 및 체류시간 추정)

  • Jung, Kwang-Young;Ro, Young-Jae;Kim, Baek-Jin;Park, Kwang-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.97-108
    • /
    • 2012
  • A Lagrangian particle tracking model coupled with the ECOM3D were used to study on the behavior of fresh water released from the Namgang Dam in terms of residence time in Kangjin Bay, South Sea, Korea. Model was calibrated until skill cores for elevation, velocity, temperature and salinity are satisfied over 85%. In the numerical simulation, particles were released in 1 hour time interval from the northern boundary. The different patterns of particle trajectory are identified under the varying dynamics from tidal to density-driven current. The average residence time of total particles are approximately 65.9 hours in the entire Kangjin Bay. The average residence time were increased from 55~65 to 70~80 hours during maximum discharge period. Discharge rate of fresh water and average residence time in the Kangjin Bay is high correlated with correlation coefficient over 0.81.