• Title/Summary/Keyword: Coupled field

Search Result 1,178, Processing Time 0.027 seconds

Numerical Modeling of Flow Characteristics within the Hyporheic Zones in a Pool-riffle Sequences (여울-소 구조에서 지표수-지하수 혼합대의 흐름 특성 분석에 관한 수치모의 연구)

  • Lee, Du-Han;Kim, Young-Joo;Lee, Sam-Hee
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.75-87
    • /
    • 2012
  • Hyporheic zone is a region beneath and alongside a stream, river, or lake bed, where there is mixing of shallow groundwater and surfacewater. Hyporheic exchange controls a variety of physical, biogeochemical and thermal processes, and provides unique ecotones in a aquatic ecosystem. Field and experimental observations, and modeling studies indicate that hyporheic exchange is mainly in response to pressure gradients driven by the geomorphological features of stream beds. In the reach scale of a stream, pool-riffle structures dominate the exchange patterns. Flow over a pool-riffle sequence develops recirculation zones and stagnation points, and this flow structures make irregular pressure gradient which is driving force of the hyporheic exchange. In this study, 3 D hydro-dynamic model solves the Reynolds-averaged Navier-Stokes equations for the surface water and Darcy's Law and the continuity equation for ground water. The two sets of equations are coupled via the pressure distribution along the interface. Simulation results show that recirculation zones and stagnation points in the pool-riffle structures dominantly control the upwelling and downwelling patterns. With decrease of recirculation zones, length of donwelling zone formed in front of riffles is reduced and position of maximum downwelling point moves downward. The numerical simulation could successfully predict the behavior of hyporheic exchange and contribute the field study, river management and restoration.

Grouting diffusion mechanism in an oblique crack in rock masses considering temporal and spatial variation of viscosity of fast-curing grouts

  • Huang, Shuling;Pei, Qitao;Ding, Xiuli;Zhang, Yuting;Liu, Dengxue;He, Jun;Bian, Kang
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.151-163
    • /
    • 2020
  • Grouting method is an effective way of reinforcing cracked rock masses and plugging water gushing. Current grouting diffusion models are generally developed for horizontal cracks, which is contradictory to the fact that the crack generally occurs in rock masses with irregular spatial distribution characteristics in real underground environments. To solve this problem, this study selected a cement-sodium silicate slurry (C-S slurry) generally used in engineering as a fast-curing grouting material and regarded the C-S slurry as a Bingham fluid with time-varying viscosity for analysis. Based on the theory of fluid mechanics, and by simultaneously considering the deadweight of slurry and characteristics of non-uniform spatial distribution of viscosity of fast-curing grouts, a theoretical model of slurry diffusion in an oblique crack in rock masses at constant grouting rate was established. Moreover, the viscosity and pressure distribution equations in the slurry diffusion zone were deduced, thus quantifying the relationship between grouting pressure, grouting time, and slurry diffusion distance. On this basis, by using a 3-d finite element program in multi-field coupled software Comsol, the numerical simulation results were compared with theoretical calculation values, further verifying the effectiveness of the theoretical model. In addition, through the analysis of two engineering case studies, the theoretical calculations and measured slurry diffusion radius were compared, to evaluate the application effects of the model in engineering practice. Finally, by using the established theoretical model, the influence of cracking in rock masses on the diffusion characteristics of slurry was analysed. The results demonstrate that the inclination angle of the crack in rock masses and azimuth angle of slurry diffusion affect slurry diffusion characteristics. More attention should be paid to the actual grouting process. The results can provide references for determining grouting parameters of fast-curing grouts in engineering practice.

In vitro Anticancer Effect of Salt on HepG2 Human Hepatocellular Carcinoma Cells (소금의 HepG2 인체 간암세포에서의 in vitro 항암 효과)

  • Kim, Hee-Young;Ju, Jaehyun;Lee, Kyung Hee;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.137-142
    • /
    • 2016
  • We investigated the anti-proliferative effects of solar salt and purified salt (PS) on HepG2 human hepatocellular cancer cells as well as their effects on mRNA and protein expression of apoptosis- and cell cycle-related genes, including Bcl-2, Bax, p53, and p21. Each salt sample suppressed cancer cell proliferation when treated at a concentration of 0.5% or 1%. Especially solar salt from T salt field (SS-T) and solar salt from Y salt field (SS-Y) significantly suppressed proliferation of cancer cells in comparison with PS. Treatment of HepG2 cells with salt samples at a concentration of 1% suppressed expression of Bcl-2 and promoted expression of Bax, p53, and p21 at the mRNA and protein levels in comparison with the control group. Inductively coupled plasma optical emission spectrometry (ICP-OES) showed that SS-T and SS-Y had higher concentrations of Ca, Mg, S, and K than PS, and SS-T contained higher concentrations of these minerals than SS-Y. It seems that Na and mineral contents in solar salt may contribute to regulation of the genes. Taken together, salt, especially mineral rich solar salt, inhibits cancer cell growth by regulating apoptosis and cell cycle-related genes.

Precise Detection of Buried Underground Utilities by Non-destructive Electromagnetic Survey (비파괴 전자탐사에 의한 지하 매설물의 정밀탐지)

  • Shon, Ho-Woong;Lee, Seung-Hee;Lee, Kang-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.275-283
    • /
    • 2002
  • To detect the position and depth of buried underground utilities, method of Ground Penetrating Radar(GPR) survey is the most commonly used. However, the skin-depth of GPR is very shallow, and in the places where subsurface materials are not homogeneous and are compose of clays and/or salts and gravels, GPR method has limitations in application and interpretation. The aim of this study is to overcome these limitations of GPR survey. For this purpose the site where the GPR survey is unsuccessful to detect the underground big pipes is selected, and soil tests were conducted to confirm the reason why GPR method was not applicable. Non-destructive high-frequency electromagnetic (HFEM) survey was newly developed and was applied in the study area to prove the effectiveness of this new technique. The frequency ranges $2kHz{\sim}4MHz$ and the skin depth is about 30m. The HFEM measures the electric field and magnetic field perpendicular to each other to get the impedance from which vertical electric resistivity distribution at the measured point can be deduced. By adopting the capacitive coupled electrodes, it can make the measuring time shorter, and can be applied to the places covered by asphalt an and/or concrete. In addition to the above mentioned advantages, noise due to high-voltage power line is much reduced by stacking the signals. As a result, the HFEM was successful in detecting the buried underground objects. Therefore this method is a promising new technique that can be applied in the lots of fields, such as geotechnical and archaeological surveys.

Usability of DNA Sequence Data: from Taxonomy over Barcoding to Field Detection. A Case Study of Oomycete Pathogens

  • Choi, Young-Joon;Thines, Marco
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.41-41
    • /
    • 2015
  • Oomycetes belong to the kingdom Straminipila, a remarkably diverse group which includes brown algae and planktonic diatoms, although they have previously been classified under the kingdom Fungi. These organisms have evolved both saprophytic and pathogenic lifestyles, and more than 60% of the known species are pathogens on plants, the majority of which are classified into the order Peronosporales (includes downy mildews, Phytophthora, and Pythium). Recent phylogenetic investigations based on DNA sequences have revealed that the diversity of oomycetes has been largely underestimated. Although morphology is the most valuable criterion for their identification and diversity, morphological species identification is time-consuming and in some groups very difficult, especially for non-taxonomists. DNA barcoding is a fast and reliable tool for identification of species, enabling us to unravel the diversity and distribution of oomycetes. Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The mitochondrial cox2 gene has been widely used for identification, taxonomy and phylogeny of various oomycete groups. However, recently the cox1 gene was proposed as a DNA barcode marker instead, together with ITS rDNA. To determine which out of cox1 or cox2 is best suited as universal oomycete barcode, we compared these two genes in terms of (1) PCR efficiency for 31 representative genera, as well as for historic herbarium specimens, and (2) in terms of sequence polymorphism, intra- and interspecific divergence. The primer sets for cox2 successfully amplified all oomycete genera tested, while cox1 failed to amplify three genera. In addition, cox2 exhibited higher PCR efficiency for historic herbarium specimens, providing easier access to barcoding type material. In addition, cox2 yielded higher species identification success, with higher interspecific and lower intraspecific divergences than cox1. Therefore, cox2 is suggested as a partner DNA barcode along with ITS rDNA instead of cox1. Including the two barcoding markers, ITS rDNA and cox2 mtDNA, the multi-locus phylogenetic analyses were performed to resolve two complex clades, Bremia lactucae (lettuce downy mildew) and Peronospora effuse (spinach downy mildew) at the species level and to infer evolutionary relationships within them. The approaches discriminated all currently accepted species and revealed several previously unrecognized lineages, which are specific to a host genus or species. The sequence polymorphisms were useful to develop a real-time quantitative PCR (qPCR) assay for detection of airborne inoculum of B. lactucae and P. effusa. Specificity tests revealed that the qPCR assay is specific for detection of each species. This assay is sensitive, enabling detection of very low levels of inoculum that may be present in the field. Early detection of the pathogen, coupled with knowledge of other factors that favor downy mildew outbreaks, may enable disease forecasting for judicious timing of fungicide applications.

  • PDF

Households' Characteristics, Forest Resources Dependency and Forest Availability in Central Terai of Nepal

  • Panta, Menaka;Kim, Kyehyun;Lee, Cholyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.548-557
    • /
    • 2009
  • For centuries, forests have been a key component of rural livelihood. They are important both socially and economically in Nepal. Firewood and fodder are the basic forest products that are extracted daily or weekly basis in most of the rural areas in Nepal. In this study, a field survey of 100 households was conducted to examine the degree of forest dependency and forest resource availability, households' livelihood strategy and their relationship with forest dependency in Chitwan, Nepal. A household' response indexes were constructed, Gini coefficient, Head Count Poverty Index (HCI) and Poverty Gap Index (PGI) were calculated and one way ANOVA test was also performed for data analysis. Data revealed that 82/81% of all households were constantly used forest for firewood and fodder collection respectively while 42% of households were used forest or forest fringe for grazing. The Forest Product Availability Indexes (FPAI) showed a sharp decline of forest resources from 0.781 to 0.308 for a 20-yr time horizon while timber wood was noticeably lowered than the other products. Yet, about 33% of households were below the poverty threshold line with 0.0945 PGI. Income distribution among the household showed a lower Gini coefficient 0.25 than 0.37 of landholdings size. However, mean income was significantly varies with F-statistics=246.348 at P=0.05 between income groups (rich, medium and poor). The extraction of firewood, fodder and other forest products were significantly different between the income group with F-statistics=16.480, 19.930, 29.956 at P=0.05 respectively. Similarly, landholdings size and education were also significantly different between the income groups with F-statistics=4.333, 5.981 at P=0.05 respectively. These findings suggested that income status of households was the major indicator of forest dependency while poor and medium groups were highly dependent on the forests for firewood, fodder and other products. Forest dependency still remains high and the availability of forest products that can be extracted from the remaining forestlands is decreasing. The high dependency of households on forest coupled with other socioeconomic attributes like education, poverty, small landholders and so on were possibly caused the forest degradation in Chitwan.Therefore, policy must be directed towards the poor livelihood supporting agenda that may enhance the financial conditions of rural households while it could reduce the degree of forest dependency inspired with other income generating activities in due course.

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(I))

  • Kwon, Young-Hyun;Kim, Jin-Uk;Jung, Yu-Jin;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4656-4663
    • /
    • 2010
  • In this study, the 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics, flow distribution, air mean ages, and residence time for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. In addition, it showed the possibility that the velocity field and distribution characteristics of the residence time could be improved through a modification to inlet structure of the spray dryer reactor. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, the installation area, the operation fee, and management more convenient.

Uncoupled Solution Approach for treating Fluid-Structure Interaction due to the Near-field Underwater Explosion (근거리 수중폭발에 따른 유체-구조 상호작용 취급을 위한 비연성 해석방법)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.125-132
    • /
    • 2019
  • Because the water exposed to shock waves caused by an underwater explosion cannot withstand the appreciable tension induced by the change in both pressure and velocity, the surrounding water is cavitated. This cavitating water changes the transferring circumstance of the shock loading. Three phenomena contribute to hull-plate damage; initial shock loading and its interaction with the hull plate, local cavitation, and local cavitation closure then shock reloading. Because the main concern of this paper is local cavitation due to a near-field underwater explosion, the water surface and the waves reflected from the sea bottom were not considered. A set of governing equations for the structure and the fluid were derived. A simple one-dimensional infinite plate problem was considered to verify this uncoupled solution approach compared with the analytic solution, which is well known in this area of interest. The uncoupled solution approach herein would be useful for obtaining a relatively high level of accuracy despite its simplicity and high computational efficiency compared to the conventional coupled method. This paper will help improve the understanding of fluid-structure interaction phenomena and provide a schematic explanation of the practical problem.

Classification of Convolvulaceae plants using Vis-NIR spectroscopy and machine learning (근적외선 분광법과 머신러닝을 이용한 메꽃과(Convolvulaceae) 식물의 분류)

  • Yong-Ho Lee;Soo-In Sohn;Sun-Hee Hong;Chang-Seok Kim;Chae-Sun Na;In-Soon Kim;Min-Sang Jang;Young-Ju Oh
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.581-589
    • /
    • 2021
  • Using visible-near infrared(Vis-NIR) spectra combined with machine learning methods, the feasibility of quick and non-destructive classification of Convolvulaceae species was studied. The main aim of this study is to classify six Convolvulaceae species in the field in different geographical regions of South Korea using a handheld spectrometer. Spectra were taken at 1.5 nm intervals from the adaxial side of the leaves in the Vis-NIR spectral region between 400 and 1,075 nm. The obtained spectra were preprocessed with three different preprocessing methods to find the best preprocessing approach with the highest classification accuracy. Preprocessed spectra of the six Convolvulaceae sp. were provided as input for the machine learning analysis. After cross-validation, the classification accuracy of various combinations of preprocessing and modeling ranged between 43.4% and 98.6%. The combination of Savitzky-Golay and Support vector machine methods showed the highest classification accuracy of 98.6% for the discrimination of Convolvulaceae sp. The growth stage of the plants, different measuring locations, and the scanning position of leaves on the plant were some of the crucial factors that affected the outcomes in this investigation. We conclude that Vis-NIR spectroscopy, coupled with suitable preprocessing and machine learning approaches, can be used in the field to effectively discriminate Convolvulaceae sp. for effective weed monitoring and management.

Experimental study on structural integrity assessment of utility tunnels using coupled pulse-impact echo method (결합된 초음파-충격 반향 기법 기반의 일반 지하구 구조체의 건전도 평가에 관한 실험적 연구)

  • Jin Kim;Jeong-Uk Bang;Seungbo Shim;Gye-Chun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.479-493
    • /
    • 2023
  • The need for safety management has arisen due to the increasing number of years of operated underground structures, such as tunnels and utility tunnels, and accidents caused by those aging infrastructures. However, in the case of privately managed underground utility ducts, there is a lack of detailed guidelines for facility safety and maintenance, resulting in inadequate safety management. Furthermore, the absence of basic design information and the limited space for safety assessments make applying currently used non-destructive testing methods challenging. Therefore, this study suggests non-destructive inspection methods using ultrasonic and impact-echo techniques to assess the quality of underground structures. Thickness, presence of rebars, depth of rebars, and the presence and depth of internal defects are assessed to provide fundamental data for the safety assessment of box-type general underground structures. To validate the proposed methodology, different conditions of concrete specimens are designed and cured to simulate actual field conditions. Applying ultrasonic and impact signals and collecting data through multi-channel accelerometers determine the thickness of the simulated specimens, the depth of embedded rebar, and the extent of defects. The predicted results are well agreed upon compared with actual measurements. The proposed methodology is expected to contribute to developing safety diagnostic methods applicable to general underground structures in practical field conditions.