• Title/Summary/Keyword: Coupled Variables

Search Result 340, Processing Time 0.03 seconds

Basic bifurcation by intermittently coupled capacitors

  • Shimakawa, Junya;Saito, Toshimichi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1614-1617
    • /
    • 2002
  • This paper studies basic phenomena of intermittently coupled capacitors circuits. As an analysis tool, we introduce Hybrid return map of real and binary variables, and analyze bifurcation phenomena for three parameters . Co-existence of synchronous phenomena is also shown. Using a simple test circuit, typical phenomena see verified in the laboratory.

  • PDF

A Decomposition Based MDO by Coordination of Disciplinary Subspace Optimization (분야별 하부시스템의 최적화를 통합한 분해기반 MDO 방법론)

  • Jeong, Hui-Seok;Lee, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1822-1830
    • /
    • 2002
  • The paper describes the development of a decomposition based multidisciplinary design optimization (MDO) method that coordinates each of disciplinary subspace optimization (DSO). A multidisciplinary design system considered in the present study is decomposed into a number of subspaces based on their own design objective and constraints associated with engineering discipline. The coupled relations among subspaces are identified by interdisciplinary design variables. Each of subsystem level optimization, that is DSO would be performed in parallel, and the system level coordination is determined by the first order optimal sensitivities of subspace objective functions with respect to interdisciplinary design variables. The central of the present work resides on the formulation of system level coordination strategy and its capability in decomposition based MDO. A fluid-structure coupled design problem is explored as a test-bed to support the proposed MDO method.

Optimal Structural Design of a Tonpilz Transducer Considering the Characteristic of the Impulsive Shock Pressure (충격 특성을 고려한 Tonpilz 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.987-994
    • /
    • 2008
  • The optimal structure of the Tonpilz transducer was designed. First, the FE model of the transducer was constructed, that included all the details of the transducer which used practical environment. The validity of the FE model was verified through the impedance analysis of the transducer. Second, the resonance frequency, the sound pressure, the bandwidth, and the impulsive shock pressure of the transducer in relation to its structural variables were analyzed. Third, the design method of $2^n$ experiments was employed to reduce the number of analysis cases, and through statistical multiple regression analysis of the results, the functional forms of the transducer performances that could consider the cross-coupled effects of the structural variables were derived. Based on the all results, the optimal geometry of the Tonpilz transducer that had the highest sound pressure level at the desired working environment was determined through the optimization with the SQP-PD method of a target function composed of the transducer performance. Furthermore, for the convenience of a user, the automatic process program making the optimal structure of the acoustic transducer automatically at a given target and a desired working environment was made. The developed method can reflect all the cross-coupled effects of multiple structural variables, and can be extended to the design of general acoustic transducers.

An Experimental Study on the Performances of a Coupled Reactor with Catalytic Combustion and Steam Reforming for SOFC and MCFC (SOFC와 MCFC에 적용하기 위한 촉매연소-수증기 개질이 통합된 반응기의 성능에 관한 실험적 연구)

  • Ghang, Taegyu;Kim, Yongmo;Lee, Sangmin;Ahn, Kookyoung
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.4
    • /
    • pp.364-377
    • /
    • 2014
  • The performances of a coupled reactor in which a steam reformer and a catalytic combustor were mounted simultaneously had been investigated and compared. The combustible offgas exhausted from the anode of SOFC and MCFC were utilized as heat sources for the endothermic steam methane reforming. The catalytic combustion was used in order to burn the combustible offgas. Thermal energy released by the catalytic combustion is directly transferred to the reformer surrounding the combustor. The various operational conditions such as fuel utilization rate, steam to carbon ratio, amount of catalysts, fuel cell loads were changed. And operating variables were comprehensively identified by sensitivity analysis. The fundamental results from this experimental study show the potential abilities of the coupled reactor. Therefore the results will be of help to design and manufacture the more better coupled reactor in the future.

Development of a Numerical Simulator for Methane-hydrate Production (메탄 하이드레이트 생산 묘사를 위한 수치도구의 개발)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.67-75
    • /
    • 2014
  • Methane gas hydrate which is considered energy source for the next generation has an urgent need to develop reliable numerical simulator for coupled THM phenomena in the porous media, to minimize problems arising during the production and optimize production procedures. International collaborations to improve previous numerical codes are in progress, but they still have mismatch in the predicted value and unstable convergence. In this paper, FEM code for fully coupled THM phenomena is developed to analyze methane hydrate dissociation in the porous media. Coupled partial differential equations are derived from four mass balance equations (methane hydrate, soil, water, and hydrate gas), energy balance equation, and force equilibrium equation. Five main variables (displacement, gas saturation, fluid pressure, temperature, and hydrate saturation) are chosen to give higher numerical convergence through trial combinations of variables, and they can analyze the whole region of a phase change in hydrate bearing porous media. The kinetic model is used to predict dissociation of methane hydrate. Developed THM FEM code is applied to the comparative study on a Masuda's laboratory experiment for the hydrate production, and verified for the stability and convergence.

Application of ROMS-NPZD Coupled Model for Seasonal Variability of Nutrient and Chlorophyll at Surface Layer in the Northwestern Pacific (ROMS-NPZD 접합모델을 이용한 한반도 주변해역의 표층 영양염 및 클로로필의 계절변동성)

  • Lee, Joon-ho;Kim, Tae-hoon;Moon, Jae-hong
    • Ocean and Polar Research
    • /
    • v.38 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • Recently, there has been a growing interest in physical-biological ocean-modeling systems by communities in the fields of science and business. In this paper, we present preliminary results from a coupled physical-biological model for the Northwestern Pacific marginal seas. The ocean circulation component is an implementation of the Regional Ocean Modeling System (ROMS), and the lower trophic level ecosystem component is a Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model. The ROMS-NPZD coupled system, with a 25 km resolution, is forced by climatological atmospheric data and predicts the physical variables and concentrations of nitrate, phytoplankton, zooplankton, and detritus. Model results are compared with remote-sensed sea surface temperature and chlorophyll, and with climatological sea surface salinity and nitrate. Our model adequately reproduces the observed spatial distribution and seasonal variability of nitrate and chlorophyll concentrations as well as physical variables, showing a high correlation in the East Sea (ES) and Kuroshio/Oyashio Extension (KOE) region but relatively low correlation in the Yellow Sea (YS) and East China Sea (ECS). Although some deficiencies were found in the biological components, such as the over/underestimation of the intensity of phytoplankton blooms in the ES and KOE/the YS and ECS, our system demonstrates the capability of the model to capture and record dominant seasonal variability in physical-biological processes and this holds out the promise of coming to a better understanding of such processes and making better predictions .

Structural Performance of Hybrid Coupled Shear Wall System Considering Connection Details (접합부 상세에 따른 복합 병렬 전단벽 시스템의 구조 성능)

  • Park, Wan Shin;Yun, Hyun Do;Kim, Sun Woong;Jang, Young Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.128-137
    • /
    • 2012
  • In high multistory buildings, hybrid coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic loads. Hybrid coupled shear walls are usually built over the whole height of the building and are laid out either as a series of walls coupled by steel beams with openings to accommodate doors, elevator walls, windows and corridors. In this paper, the behavior characteristics of hybrid coupled shear wall system considering connection details is examined through results of an experimental research program where 5 two-thirds scale specimens were tested under cyclic loading. Such connections details are typically employed in hybrid coupling wall system consisting of steel coupling beams and reinforced concrete shear wall. The test variables of this study are embedment length of steel coupling beam and wall thickness of concrete shear wall. The results and discussion presented in this paper provide fundamental data for seismic behavior of hybrid coupled shear wall systems.

A PRELIMINARY STUDY FOR THE COUPLED ATMOSPHERS-STREAMFLOW MODELING IN KOREA

  • Bae, Deg-Hyo;Chung, Jun-Seok;Kwon, Won-Tae
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.25-37
    • /
    • 2000
  • This study presents some results of a preliminary study for the coupled precipitation and river flow prediction system. The model system in based on three numerical models, Mesoscale Atmospheric Simulation model for generating atmospheric variables. Soil-Plant-Snow model for computing interactions within soil-canopy-snow system as well as the energy and water exchange between the atmosphere and underlying surfaces, and TOPMODEL for simulating stream flow, subsurface flow, and water tabled depth in an watershed. The selected study area is the 2,703 $\alpha_4$ $\km_2$ Soyang River basin with outlet at Soyang dam site. In addition to providing the results of rainfall and stream flow predictions, some results of DEM and GIS application are presented. It is obvious that the accurate river flow predictions are highly dependant on the accurate predictation predictions.

  • PDF

Numerical Analysis of Arc-Heated Flow through a solution of Electric Field (전기장 해석을 통한 아크/열 유동 해석)

  • Kim Chin-Su;Oh Se-Jong;Choi Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.72-77
    • /
    • 2000
  • This paper presents the results of the application of a computational fluid dynamics algorithm for the simulation of plasma flows of arc-heated jet. The underlying physical model is based on the axisymmetric form of the conservation equations that are coupled with an arc model including Ohm heating, electromagnetic forces. The arc model given as a source term in fluid dynamic equations is determined by a solution of electric potential field governed by an elliptic partial differential equation. The governing equation of electric field is loosely coupled with fluid dynamic equations by an electric conductivity that is a function of state variables. However, the electric fields and flow fields cannot be solved In fully coupled manner, but should be solved iteratively due to the different characteristics of governing equations. With this solution approach, several applications of arc flow analysis will be presented including Arc Thruster and Circuit Breaker.

  • PDF

Characteristics Analysis & Optimum Design of Anisotropy Rotor Synchronous Reluctance Motor Using Coupled Finite Element Method & Response Surface Methodology (유한 요소법과 반응표면법이 결합된 동기형 릴럭턴스 전동기의 특성해석 및 이방성 회전자 설계)

  • Lee, Il-Kyo;Cho, Young-Hyun;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.754_755
    • /
    • 2009
  • This paper deals with the characteristics analysis & optimum design of Synchronous Reluctance Motor (SynRM) with anisotropy rotor using a coupled Finite Element Method (FEM) & Response Surface Methodology (RSM). The focus of this paper is the characteristics analysis & optimum design relative to the output power on the basis of rotor materials of a SynRM. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate nonlinear solutions. Comparisons are given with characteristics of normal synchronous reluctance motor and those of anisotropy rotor SynRM (ANISO-SynRM), respectively. The feasibility of using RSM with FEM in practical engineering problem is investigated with computational examples and comparison between the fitted response and the results obtained from an analytical solution according to the design variables of rotor in anisotropy rotor SynRM.

  • PDF