• Title/Summary/Keyword: Coupled Reactor

Search Result 277, Processing Time 0.03 seconds

Effect of Media in Advanced Treatment of Sewage Using Submerged Membrane-Coupled Sequencing Batch Reactor (침지형 막결합 연속회분식 반응기를 사용한 하수의 고도처리에서 담체의 효과)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.470-479
    • /
    • 2016
  • In the advanced treatment of sewage using the submerged membrane-coupled sequencing batch reactor (SMSBR) with media, the effect of media on the filtration performance and removal efficiency were investigated. Dosages of the media in the SMSBR were 10% based on working volume of reactor. As a control system, SMSBR without media and PAC, SMSBR with PAC (10 g/L) only, and SMSBR with media and PAC were also operated. The experimental results showed that there was no big difference observed in the removal efficiencies of COD, T-N, and T-P irrespective of the dosages of the media and PAC. But transmembrane pressure (TMP) of SMSBR with media increased slowly during the operation time, while that of SMSBR without media increased rapidly. Using SMSBR with media, it was possible to operate without the membrane cleaning during the 91 days. Using SMSBR with media only, after 80 days the average removal efficiencies of COD, T-N, and T-P were 95.0, 69.3%, and 51.4%, respectively.

Membrane-Coupled Sequencing Batch Reactor System for the Advanced Treatment of Rural Village Sewage (막결합 연속회분식 반응기를 이용한 농촌마을 하수의 고도처리)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.20-30
    • /
    • 2014
  • A membrane-coupled sequencing batch reactor (MSBR) was used for the advanced treatment of rural village sewage which is very low C/N ratio. The effect of powdered activated carbon, aeration rate, and external organic material loadings on the treatment efficiency and filtration performance were investigated in sequencing batch reactor, in which a flat-sheet type microfiltration membrane with a pore size of $0.4{\mu}m$ was submerged. At the initial operation (within 54 days) MLSS concentration, and the removal efficiencies of COD, T-N, and T-P were increased with the increase of C/N ratio. After 89 days the removal efficiencies of COD, T-N, and T-P were 97.1%, 75.0%, and 48.3%, respectively. Suspended solid-free effluent was obtained by membrane filtration. The T-P removal was relatively low because of depending on the amount of excess sludge wasting. During the operation of MSBR with powdered activated carbon, the particle size of the sludge reduced by the increase of collision frequency and mixing intensity. In comparison with MSBR without powdered activated carbon, TMP of MSBR with that was significantly elevated.

The Effect of Media on the Removal Efficiency and Filtration Performance in the Submerged Membrane-Coupled Sequencing Batch Reactor with Media (담체가 첨가된 침지형 막결합 연속회분식 반응기에서 제거효율과 여과성능에 대한 담체의 효과)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.450-460
    • /
    • 2012
  • In the submerged membrane-coupled sequencing batch reactor (MSBR) with sponge type media, the effect of media on the removal efficiency and filtration performance were investigated. Dosages of the media in the MSBR were set of 5%, 10%, and 20% based on working volume of reactor. As a control system, the MSBR without media was also operated. The experimental results showed that there was also no difference observed in the removal efficiencies of COD, T-N, and T-P irrespective of the dosages of the media. But TMP (transmembrane pressure) of the MSBR with media increased slowly during the operation time, while that of the MSBR without media increased rapidly at the initial operation. This result was thought that the collisions between flat membrane and moving media gave shear forces which decreased the cake layer on the surface of flat type membrane. Consequently, this study showed that filtration performance of the MSBR with media was greatly enhanced compared with that of the MSBR without media. The MSBR with media suggested in this study can be a good candidate for the wastewater treatment.

Numerical Simulations of Subcritical Reactor Kinetics in Thermal Hydraulic Transient Phases

  • J. Yoo;Park, W. S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.149-154
    • /
    • 1998
  • A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute(KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons from spallation reactions are essentially required for operating the reactor in its steady state. furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance of the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases.

  • PDF

Optimum Radial Build of a Low Aspect Ratio Tokamak Reactor

  • Hong, B.G.;Hwang, Y.S.;Kang, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.397-397
    • /
    • 2011
  • In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the radial build of TF coil and the shield play a key role in determining the size of a reactor. For self-consistent determination of the reactor components and physics parameters, a system analysis code is coupled with one-dimensional radiation transport code. Conceptual design study of a compact superconducting LAR tokamak reactor with aspect ratio less than 2.5 was conducted and the optimum radial build was identified. It is shown that the use of an improved shielding material and high temperature superconducting magnets with high critical current density opens up the possibility of a fusion power plant with compact size and small re-circulating power simultaneously at low aspect ratio, and that by using an inboard neutron reflector instead of breeding blanket, tritium self-sufficiency is possible with outboard blanket only and thus compact sized reactor is viable.

  • PDF

Development and testing of the hydrogen behavior tool for Falcon - HYPE

  • Piotr Konarski;Cedric Cozzo;Grigori Khvostov;Hakim Ferroukhi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.728-744
    • /
    • 2024
  • The presence of hydrogen absorbed by zirconium-based cladding materials during reactor operation can trigger degradation mechanisms and endanger the rod integrity. Ensuring the durability of the rods in extended time-frames like dry storage requires anticipating hydrogen behavior using numerical modeling. In this context, the present paper describes a hydrogen post-processing tool for Falcon - HYPE, a PSI's in-house tool able to calculate hydrogen uptake, transport, thermochemistry, reorientation of hydrides and hydrogen-related failure criteria. The tool extracts all necessary data from a Falcon output file; therefore, it can be considered loosely coupled to Falcon. HYPE has been successfully validated against experimental data and applied to reactor operation and interim storage scenarios to present its capabilities.

Boundary condition coupling methods and its application to BOP-integrated transient simulation of SMART

  • Jongin Yang;Hong Hyun Son;Yong Jae Lee;Doyoung Shin;Taejin Kim;Seong Soo Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1974-1987
    • /
    • 2023
  • The load-following operation of small modular reactors (SMRs) requires accurate prediction of transient behaviors that can occur in the balance of plants (BOP) and the nuclear steam supply system (NSSS). However, 1-D thermal-hydraulics analysis codes developed for safety and performance analysis have conventionally excluded the BOP from the simulation by assuming ideal boundary conditions for the main steam and feed water (MS/FW) systems, i.e., an open loop. In this study, we introduced a lumped model of BOP fluid system and coupled it with NSSS without any ideal boundary conditions, i.e., in a closed loop. Various methods for coupling boundary conditions at MS/FW were tested to validate their combination in terms of minimizing numerical instability, which mainly arises from the coupled boundaries. The method exhibiting the best performance was selected and applied to a transient simulation of an integrated NSSS and BOP system of a SMART. For a transient event with core power change of 100-20-100%, the simulation exhibited numerical stability throughout the system without any significant perturbation of thermal-hydraulic parameters. Thus, the introduced boundary-condition coupling method and BOP fluid system model can expectedly be employed for the transient simulation and performance analysis of SMRs requiring daily load-following operations.

MULTI-SCALE SIMULATION FOR DESIGN OF A CATALYTIC MULTI-TUBULAR REACTOR (다관식 촉매 반응기 설계를 위한 multi-scale simulation)

  • Shin Sang-Baek;Im Ye-Hoon;Ha Kyoung-Su;Urban Zbigniew;Han Sang-Phil
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.49-53
    • /
    • 2005
  • This paper presents a multi-scale hybrid simulation for the design of a catalytic multi-tubular reactor with high performance. The multi-tubular reactor consists of shell and a large number of tubes in which various catalytic chemical reactions occur. To consider fluid dynamics in the shell-side and kinetics in the tube-side at the same time, commercial CFD package and process simulation tool are coupled. This hybrid approach allowed us to predict many kinds of meaningful results such as tube center temperature profile, heat transfer coefficients on the tube wall, temperature rise of cooling medium, pressure drop through shell and tube side, concentration profile of each chemical species along the tube, and so on., and to achieve the optimal reactor design.

  • PDF

Application of Poly (Ethylene Glycol)-Bound NAD in Model Enzyme Reactor

  • Urabe, Itaru
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.510.1-510
    • /
    • 1986
  • Many enzymes require the participation of readily dissociable coenzymes as NAD for thir catalytic activities. The continuous utilization of the enzymes requires the retention and regeneration of the coenzymes. For this purpose, several kinds of macromolecular NAD derivatives have been prepared by covalently attaching NAD to watersoluble polymers. We have prepared poly (ethylene glycol)-bound NAD (PEG-NAD) by coupling N$\^$6/-(2-carboxyethyl)-NAD to one terminal of ${\gamma}$ $\omega$-diaminoly (ethylene glycol) (Mr 3000) with water-soluble carbodiimide. PED-NAD thus obtained has one NAD moiety located at a terminal of the linear, flexible and hydrophilic chain of poly (ethylene glycol). PED-NAD has good coenzyme activity for various dehydrogenases and is applicable in a continuous enzyme reactor. To use these macromolecular NAD derivatives in an enzyme reactor, it si necessary to understand the behavior of the system in which the reactions of dehydrogenases are coupled by the recycling of the NAD derivative. We investigated the kinetic properties of a continuous enzyme reactor containing lactate dehydrogenase, alcohol dehydrogenase and PEG-NAD. The steady-state behavior of the enzyme reactor is explained by a simple kinetic model.

  • PDF