• 제목/요약/키워드: Coupled Model

검색결과 2,709건 처리시간 0.03초

4WD/4WS 전기 구동 차량의 동역학적 성능 해석 (Dynamic Performance Analysis for 4WD/4WS Electric-driven Vehicles)

  • 김준영;계경태;박건선;허건수;장경영;오재응
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.209-220
    • /
    • 1996
  • In this paper, dynamic performance of 4WD/4WS Electric-driven vehicles is investigated. A coupled dynamic model is introduced for longitudinal, lateral and yawing motion of 4WD/4WS vehicles. Based on the coupled model, dynamic performance is analyzed for steady-state steering, acceleration steering and brake steering, respectively. These non steady-state cornering analysis is important for non-paved road maneuvering, trajectory projection for armored vehicle and future AVCS(Advanced Vehicle Control System) technology. Simulation results are obtained based on a simulink module for the introduced model.

  • PDF

난류 비예혼합 및 부분예혼합 화염장에서 매연입자의 생성특성 해석 (Numerical Studies on Soot Formation Characteristics of Turbulent Non-premixed and Partially Premixed Flames)

  • 김태훈;이정원;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.141-143
    • /
    • 2012
  • The present study is aiming at numerically analyze the soot formation processes coupled with gas reaction mechanism in turbulent non-premixed and partially premixed flames. In order to realistically represent turbulence-chemistry interactions with detailed chemical kinetics and soot formation behaviour related to the turbulent non-premixed and partially premixed flames, the transient flamelet[1] and flamelet based level-set approach[2] are coupled with soot formation based on the two equation model [3] and DQMOM (Direct Quadrature Method of Moment)[4].

  • PDF

새로운 윤곽 오차 모델을 이용한 상호 결합 제어 (Cross-coupled Control with a New Contour Error Model)

  • 이명훈;손희수;양승한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.341-344
    • /
    • 1997
  • The higher precision in manufacturing field is demanded, the more accurate servo controller is needed. To achieve the high precision, Koren proposed the cross-coupled control (CCC) method. The objective of the CCC is reducing the contour error rather than decreasing the individual axial error. The performance of CCC depends on the contour error model. In this paper we propose a new contour error model which utilizes contour error vector based on parametric curve interpolator. The experimental results show that the new CCC is more accurate than the variable-gain CCC during free-form curve motion.

  • PDF

Analysis of body sliding along cable

  • Kozar, Ivica;Malic, Neira Toric
    • Coupled systems mechanics
    • /
    • 제3권3호
    • /
    • pp.291-304
    • /
    • 2014
  • Paper discusess a dynamic engineering problem of a mass attached to a pendulum sliding along a cable. In this problem the pendulum mass and the cable are coupled together in a model described by a system of differential algebraic equations (DAE). In the paper we have presented formulation of the system of differential equations that models the problem and determination of the initial conditions. The developed model is general in a sense of free choice of support location, elastic cable properties, pendulum length and inclusion of braking forces. Examples illustrate and validate the model.

Network Modeling and Circuit Characteristics of Aperture-Coupled Vertically Mounted Strip Antenna

  • Kim, Jeong-Phill
    • Journal of electromagnetic engineering and science
    • /
    • 제11권2호
    • /
    • pp.122-127
    • /
    • 2011
  • A general analysis of an aperture-coupled vertically mounted strip antenna is presented to examine its circuit characteristics. Based on the present analysis, an equivalent circuit model is developed, and an analytic or semi-analytic evaluation of the related circuit element values is described. The effects of structure parameters on the antenna characteristics were studied with the developed equivalent circuit, and the design curves were obtained. To check the validity of the proposed analysis and design theory, two C-band antennas (5.0 GHz and 4.5 GHz) were designed and fabricated. Their computed characteristics, derived from the proposed network analysis, were compared with the measurement and simulation results. The error of the current model in predicting the operating center frequency was less than 0.50 %. In addition, the observed bandwidth was found to be comparable to the conventional microstrip antennas. All the results fully validated the efficiency and accuracy of the proposed analysis and network model.

Stochastic upscaling via linear Bayesian updating

  • Sarfaraz, Sadiq M.;Rosic, Bojana V.;Matthies, Hermann G.;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • 제7권2호
    • /
    • pp.211-232
    • /
    • 2018
  • In this work we present an upscaling technique for multi-scale computations based on a stochastic model calibration technique. We consider a coarse-scale continuum material model described in the framework of generalized standard materials. The model parameters are considered uncertain, and are determined in a Bayesian framework for the given fine scale data in a form of stored energy and dissipation potential. The proposed stochastic upscaling approach is independent w.r.t. the choice of models on coarse and fine scales. Simple numerical examples are shown to demonstrate the ability of the proposed approach to calibrate coarse scale elastic and inelastic material parameters.

A coupled damage-viscoplasticity model for the analysis of localisation and size effects

  • Georgin, J.F.;Sluys, L.J.;Reynouard, J.M.
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.169-188
    • /
    • 2004
  • A coupled damage-viscoplasticity model is presented for the analysis of localisation and size effects. On one hand, viscosity helps to avoid mesh sensitivity because of the introduction of a length scale in the model and, on the other hand, enables to represent size effects. Size effects were analysed by means of three-point bending tests. Correlation between the fracture energy parameter measured experimentally and the density fracture energy modelling parameter is discussed. It has been shown that the dependence of nominal strength and fracture energy on size is determined by the ligament length in comparison with the width of the fracture process zone.

Analytic Modeling of the Xenon Oscillation Due to Control Rod Movement

  • Song, Jae-Seung;Cho, Nam-Zin;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.80-87
    • /
    • 1999
  • An analytic axial xenon oscillation model was developed for pressurized water reactor analysis. The model employs an equation system for axial difference parameters that was derived from the two-group one-dimensional diffusion equation with control rod modeling and coupled with xenon and iodine balance equations. The spatial distributions of nu, xenon, and iodine were expanded by the Fourier sine series, resulting in cancellation of the flux-xenon coupled non-linearity. An inhomogeneous differential equation system for the axial difference parameters, which gives the relationship between power, iodine and xenon axial differences in the case of control rod movement, was derived and solved analytically. The analytic solution of the axial difference parameters can directly provide with the variation of axial power difference during xenon oscillation. The accuracy of the model is verified by benchmark calculations with one-dimensional reference core calculations.

  • PDF

화학-기계적 연마 공정의 물질제거 메커니즘 해석 Part I: 연성 통합 모델링 (An Analysis on the Material Removal Mechanism of Chemical-Mechanical Polishing Process Part I: Coupled Integrated Material Removal Modeling)

  • 석종원;오승희;석종혁
    • 반도체디스플레이기술학회지
    • /
    • 제6권2호
    • /
    • pp.35-40
    • /
    • 2007
  • An integrated material removal model considering thermal, chemical and contact mechanical effects in CMP process is proposed. These effects are highly coupled together in the current modeling effort. The contact mechanics is employed in the model incorporated with the heat transfer and chemical reaction mechanisms. The mechanical abrasion actions happening due to the mechanical contacts between the wafer and abrasive particles in the slurry and between the wafer and pad asperities cause friction and consequently generate heats, which mainly acts as the heat source accelerating chemical reaction(s) between the wafer and slurry chemical(s). The proposed model may be a help in understanding multi-physical interactions in CMP process occurring among the wafer, pad and various consumables such as slurry.

  • PDF

연속주조공정에서의 유동과 응고에 대한 유한요소 모델링 (A Finite Element Modeling on the Fluid Flow and Solidification in a Continuous Casting Process)

  • 김태헌;김덕수;최형철;김우승;이세균
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.820-830
    • /
    • 1999
  • The coupled turbulent flow and solidification is considered in a typical slab continuous easting process using commercial program FIDAP. Standard $k-{\varepsilon}$ turbulence model is modified to decay turbulent viscosity in the mushy zone and laminar viscosity is set to a sufficiently large value at the solid region. This coupled turbulent flow and solidification model also contains thermal contact resistance due to the mold powder and air gap between the strand and mold using an effective thermal conductivity. From the computed flow pattern, the trajectory of inclusion particles was calculated. The comparison between the predicted and experimental solidified shell thickness shows a good agreement.