• Title/Summary/Keyword: Coupled Field Circuit Analysis

Search Result 43, Processing Time 0.029 seconds

Reduction of Electromagnetic Field from Wireless Power Transfer Using a Series-Parallel Resonance Circuit Topology

  • Kim, Jong-Hoon;Kim, Hong-Seok;Kim, In-Myoung;Kim, Young-Il;Ahn, Seung-Young;Kim, Ji-Seong;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.166-173
    • /
    • 2011
  • In this paper, we implemented and analyzed a wireless power transfer (WPT) system with a CSPR topology. CSPR refers to constant current source, series resonance circuit topology of a transmitting coil, parallel resonance circuit topology of a receiving coil, and pure resistive loading. The transmitting coil is coupled by a magnetic field to the receiving coil without wire. Although the electromotive force (emf) is small (about 4.5V), the voltage on load resistor is 148V, because a parallel resonance scheme was adopted for the receiving coil. The implemented WPT system is designed to be able to transfer up to 1 kW power and can operate a LED TV. Before the implementation, the EMF reduction mechanism based on the use of ferrite and a metal shield box was confirmed by an EM simulation and we found that the EMF can be suppressed dramatically by using this shield. The operating frequency of the implemented WPT system is 30.7kHz and the air gap between two coils is 150mm. The power transferred to the load resistor is 147W and the real power transfer efficiency is 66.4 %.

Electro-thermal analysis of contacts and connections in VCB under high electric current by finite element methods (유한요소법에 의한 VCB 접속부의 대전류에 대한 전열해석)

  • Kang, Woo-Jong;Huh, Hoon;Kang, Kyeong-Rok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.715-722
    • /
    • 1998
  • A large electric system of a vacuum circuit breaker(VCB) has been studied for the electro-thermal analysis by finite element methods. Since the heat generation in VCB causes not only energy loss but deterioration of the VCB system with oxidization of parts, the overheating of the system must be prevented. For the analysis, a finite element formulation is derived for both electric analysis and thermal analysis that are coupled together. Two sets of formulations are uncoupled after finite dimensional approximation. First, the electric potential is obtained for the entire field and scaled to the given electric current. The electric field obtained is then used to calculate the heat generation in the VCB system including contacts and connections for the calculation of the temperature distribution in the entire domain. The finite element analysis is carried out to study the effect of shapes and locations of contacts and connections. From the results, the existing VCB has been modified to enhance its capacity with reduction of heat generation and temperature elevation.

Simulation of High-current Vacuum Arcs: (I)Axial Magnetic Field (진공차단부 대전류 아크 해석: (I)축방향 자기장)

  • Hwang, Jung-Hoon;Lee, Jong-Chul;Choi, Myung-Jun;Kwon, Jung-Lock;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2500-2505
    • /
    • 2007
  • The vacuum interrupter (VI) is used for medium-voltage switching circuits due to its abilities and advantages as a compact and environmental friendly circuit breaker. In general, the application of a sufficiently strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. A full understanding of the vacuum arc physics is very important since it can aid to improve the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, we have investigated the electromagnetic behaviors of high-current vacuum arcs for two different types of AMF contacts, which are coil-type and cup-type, using a commercial finite element analysis (FEA) package, ANSYS. The present results are compared with those of MAXWELL 3D, a reliable electromagnetic analysis software, for verification.

  • PDF

A Study on the Characteristics of High-Current Arc Plasma Influenced by Axial Magnetic Field (축방향 자기장에 의한 대전류 아크 특성에 관한 연구)

  • Cho, S.H.;Lee, J.C.;Choi, M.J.;Kwon, J.R.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2515-2518
    • /
    • 2008
  • The vacuum interrupter (VI) is widely used in medium-voltage switching circuits due to its abilities and advantages as an environmental friendly circuit breaker. An understanding of the vacuum arc flow phenomena is very important for improving the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and the thermal flow fields, simultaneously. In this study, we have investigated arc plasma constriction phenomena and an effect of AMF on the arc plasma with the high-current vacuum arcs for the cup-type AMF electrode by using a commercial finite element analysis (FEA) package, ANSYS. The simulation results applied with various AMFs and constant Joule heat generation show that strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. However, further studies are required on the two-way coupling method and radiation model for arc plasma in order to accomplish the advanced analysis method.

  • PDF

STUDY ON NUMERICAL ANALYSIS AND TURBULENCE MODELS FOR ARC DISCHARGES IN HIGH-VOLTAGE INTERRUPTERS (초고압 차단부 아크방전 수치해석 및 난류모델에 관한 연구)

  • Lee, J.C.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.9-15
    • /
    • 2010
  • In this study, we calculated arc discharges and flow characteristics driven by arcs in a thermal puffer chamber, which is one of most outstanding high-voltage interrupters, for understanding the complex physics and the probability of thermal breakdown. The four main parts of arc model for this virtual-reality are radiation, PTFE ablation, Cu evaporation, and turbulence. Among these important parts the turbulence model can be critical to the reliability of computation results during the whole arcing history because the plasma flow is affected by high heat energy and mass momentum. Two turbulence models, the Prandtl's mixing length model and the standard $k-\varepsilon$ model, are applied for these calculations and are compared with pressure-rise inside chamber and arc voltage between the contacts as well as flow characteristics near current zero.

Effects of Electrode Configurations on the Characteristics of Axial Magnetic Fields in Vacuum Interrupter (전극형상 변화가 진공차단기내 축방향 자기장 특성에 미치는 영향)

  • Hwang, Jung-Hoon;Lee, Jong-Chul;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • The vacuum interrupter (VI) is used for medium-voltage switching circuits due to its abilities and advantages as a compacted environmental friendly circuit breaker. In general, the application of a sufficiently strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. A full understanding of the vacuum arc physics is very important since it can aid to improve the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, we have investigated the effect of changing geometrical parameters for electromagnetic behaviors of high-current vacuum arcs with two different types of AMP contacts, which are coil-type and cup-type, using a commercial finite element analysis (FEA) package, ANSYS. The present results are compared with those of MAXWELL 3D, a reliable electromagnetic analysis software, for verification.

Dynamic Analysis and Experiment of Linear Ocsiilatory Actuator (리니어 진동 액튜에이터의 동특성 해석 및 실험)

  • Jang, S.M.;Jeong, B.S.;Lee, S.H.;Jeong, S.S.;Kweon, C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.113-115
    • /
    • 2003
  • Recently, many linear motion generators and are rapidly finding applications that ranges from short stroke linear motion vibrators, such as dynamic cone type loud speakers tostirling engine driven linear reciprocatings, alternators, compressors, textile machines etc. In this paper the dynamic performance with load is computed by a general purpose method, which the equation of electromagnetic field, the equation of electric circuit and the equation of motion are coupled together. We fumed out the driving system and the dynamic characteristics of current, voltage and displacement is confirmed experiment.

  • PDF

Transient Characteristics of Electromagnet Type Linear Hybrid Motor (전자석형 리니어 하이브리드모터의 과도특성 해석)

  • Jeon, Hye-Jeong;Jeon, Woo-Jin;Lee, Ju;Kamiya, Yushi
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.879-881
    • /
    • 2000
  • This paper treats the electromagnet type linear synchronous motor with induction operation. The proposed motor consists of the primary winding energized by variable frequency supplies and the secondary having an additional solid-conductor besides the field finding. The conductor is useful for not only the self-starting but also the damping effect In the synchronous drive. From the investigation by the experiment and the finite element analysis coupled with both electric circuit and motion equation we verify that the proposed motor is effective for practical use.

  • PDF

FE Analysis of Plasma Discharge and Sheath Characterization in Dry Etching Reactor

  • Yu, Gwang Jun;Kim, Young Sun;Lee, Dong Yoon;Park, Jae Jun;Lee, Se Hee;Park, Il Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.307-312
    • /
    • 2014
  • We present a full finite element analysis for plasma discharge in etching process of semiconductor circuit. The charge transport equations of hydrodynamic diffusion-drift model and the electric field equation were numerically solved in a fully coupled system by using a standard finite element procedure for transient analysis. The proposed method was applied to a real plasma reactor in order to characterize the plasma sheath that is closely related to the yield of the etching process. Throughout the plasma discharge analysis, the base electrode of reactor was tested and modified for improving the uniformity around the wafer edge. The experiment and numerical results were examined along with SEM data of etching quality. The feasibility and usefulness of the proposed method was shown by both numerical and experimental results.

A 3-D Steady-State Analysis of Thermal Behavior in EHV GIS Busbar

  • Lei, Jin;Zhong, Jian-ying;Wu, Shi-jin;Wang, Zhen;Guo, Yu-jing;Qin, Xin-yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.781-789
    • /
    • 2016
  • Busbar has been used as electric conductor within extra high voltage (EHV) gas insulated switchgear (GIS), which makes EHV GIS higher security, smaller size and lower cost. However, the main fault of GIS is overheating of busbar connection parts, circuit breaker and isolating switch contact parts, which has been already restricting development of GIS to a large extent. In this study, a coupled magneto-flow-thermal analysis is used to investigate the thermal properties of GIS busbar in steady-state. A three-dimensional (3-D) finite element model (FEM) is built to calculate multiphysics fields including electromagnetic field, flow field and thermal field in steady-state. The influences of current on the magnetic flux density, flow velocity and heat distribution has been investigated. Temperature differences of inner wall and outer wall are investigated for busbar tank and conducting rod. Considering the end effect in the busbar, temperature rise difference is compared between end sections and the middle section. In order to obtain better heat dissipation effect, diameters of conductor and tank are optimized based on temperature rise simulation results. Temperature rise tests have been done to validate the 3-D simulation model, which is observed a good correlation with the simulation results. This study provides technical support for optimized structure of the EHV GIS busbar.