• 제목/요약/키워드: Coupled Code

검색결과 405건 처리시간 0.024초

RECENT IMPROVEMENTS IN THE CUPID CODE FOR A MULTI-DIMENSIONAL TWO-PHASE FLOW ANALYSIS OF NUCLEAR REACTOR COMPONENTS

  • Yoon, Han Young;Lee, Jae Ryong;Kim, Hyungrae;Park, Ik Kyu;Song, Chul-Hwa;Cho, Hyoung Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.655-666
    • /
    • 2014
  • The CUPID code has been developed at KAERI for a transient, three-dimensional analysis of a two-phase flow in light water nuclear reactor components. It can provide both a component-scale and a CFD-scale simulation by using a porous media or an open media model for a two-phase flow. In this paper, recent advances in the CUPID code are presented in three sections. First, the domain decomposition parallel method implemented in the CUPID code is described with the parallel efficiency test for multiple processors. Then, the coupling of CUPID-MARS via heat structure is introduced, where CUPID has been coupled with a system-scale thermal-hydraulics code, MARS, through the heat structure. The coupled code has been applied to a multi-scale thermal-hydraulic analysis of a pool mixing test. Finally, CUPID-SG is developed for analyzing two-phase flows in PWR steam generators. Physical models and validation results of CUPID-SG are discussed.

Numerical simulation of tuned liquid tank- structure systems through σ-transformation based fluid-structure coupled solver

  • Eswaran, M.;Reddy, G.R.
    • Wind and Structures
    • /
    • 제23권5호
    • /
    • pp.421-447
    • /
    • 2016
  • Wind-induced and earthquake-induced excitations on tall structures can be effectively controlled by Tuned Liquid Damper (TLD). This work presents a numerical simulation procedure to study the performance of tuned liquid tank- structure system through ${\sigma}$-transformation based fluid-structure coupled solver. For this, a 'C' based computational code is developed. Structural equations are coupled with fluid equations in order to achieve the transfer of sloshing forces to structure for damping. Structural equations are solved by fourth order Runge-Kutta method while fluid equations are solved using finite difference based sigma transformed algorithm. Code is validated with previously published results. The minimum displacement of structure is observed when the resonance condition of the coupled system is satisfied through proper tuning of TLD. Since real-time excitations are random in nature, the performance study of TLD under random excitation is also carried out in which the Bretschneider spectrum is used to generate the random input wave.

정지 비행하는 로터 블레이드의 전산 유체-구조 결합 해석 (Computational analysis of coupled fluid-structure for a rotor blade in hover)

  • 김해동
    • 한국항공우주학회지
    • /
    • 제36권12호
    • /
    • pp.1139-1145
    • /
    • 2008
  • 로터 블레이드의 구조변형을 포함한, 제자리 비행하는 로터 블레이드의 공력해석을 수행하였다. 와류포획능력을 향상시킨 전산유체 코드와 간단한 오일러-베르누이 보 모델에 기반을 둔 구조역학 방정식을 결합시켜 회전익 유동에 대한 연계 계산을 수행하였으며 계산결과 타당한 로터블레이드 구조변형 및 공력특성을 얻었다.

불포화지반에 대한 열-수리-역학 거동의 수식화 (Formulation of fully coupled THM behavior in unsaturated soil)

  • 신호성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.808-812
    • /
    • 2010
  • A great deal of attention is focused on coupled Thermo-Hydro-Mechanical (THM) behavior of multiphase porous media in diverse geo-mechanical and geo-environmental areas. This paper presents general governing equations for coupled THM processes in unsaturated porous media. Coupled partial differential equations are derived from 3 mass balances equations (solid, water, and air), energy balance equation, and force equilibrium equation. Finite element code is developed from the Galerkin formulation and time integration of these governing equations for 4 main variables (displacement $\underline{u}$, gas pressure $P_g$, liquid pressure $P_l$), and temperature T). The code is validated with theoretical solutions for linear material with simple boundary conditions.

  • PDF

HOT CHANNEL ANALYSIS CAPABILITY OF THE BEST-ESTIMATE MULTI-DIMENSIONAL SYSTEM CODE, MARS 3.0

  • JEONG J.-J.;BAE S. W.;HWANG D. H.;LEE W. J.;CHUNG B. D.
    • Nuclear Engineering and Technology
    • /
    • 제37권5호
    • /
    • pp.469-478
    • /
    • 2005
  • The subchannel analysis capability of MARS, a multi-dimensional thermal-hydraulic system code, has been enhanced. In particular, the turbulent mixing and void drift models for the flow-mixing phenomena in rod bundles were improved. Then, the subchannel analysis feature was combined with the existing coupled system thermal-hydraulics (T/H) and 3D reactor kinetics calculation capability of MARS. These features allow for more realistic simulations of both the hot channel behavior and the global system T/H behavior. Using the coupled features of MARS, a coupled analysis of a main steam line break (MSLB) is carried out for demonstration purposes. The results of the calculations are very reasonable and promising.

Application of Flow Network Models of SINDA/FLUIN $T^{TM}$ to a Nuclear Power Plant System Thermal Hydraulic Code

  • Chung, Ji-Bum;Park, Jong-Woon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.641-646
    • /
    • 1998
  • In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUIN $T^{™}$ has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA).

  • PDF

Coupled CFD-FEM simulation of hydrodynamic responses of a CALM buoy

  • Gu, Haoyuan;Chen, Hamn-Ching;Zhao, Linyue
    • Ocean Systems Engineering
    • /
    • 제9권1호
    • /
    • pp.21-42
    • /
    • 2019
  • In this paper, the Finite-Analytic Navier-Stokes (FANS) code is coupled with an in-house finite-element code to study the dynamic interaction between a floating buoy and its mooring system. Hydrodynamic loads on the buoy are predicted with the FANS module, in which Large Eddy Simulation (LES) is used as the turbulence model. The mooring lines are modeled based on a slender body theory. Their dynamic responses are simulated with a nonlinear finite element module, MOORING3D. The two modules are coupled by transferring the forces and displacements of the buoy and its mooring system at their connections through an interface module. A free-decay model test was used to calibrate the coupled method. In addition, to investigate the capability of the present coupled method, numerical simulations of two degree-of-freedom vortex-induced motion of a CALM buoy in uniform currents were performed. With the study it can be verified that accurate predictions of the motion responses and tension responses of the CALM buoy system can be made with the coupling CFD-FEM method.

DEVELOPMENT OF A SUPERCRITICAL CO2 BRAYTON ENERGY CONVERSION SYSTEM COUPLED WITH A SODIUM COOLED FAST REACTOR

  • Cha, Jae-Eun;Lee, Tae-Ho;Eoh, Jae-Hyuk;Seong, Sung-Hwan;Kim, Seong-O;Kim, Dong-Eok;Kim, Moo-Hwan;Kim, Tae-Woo;Suh, Kyun-Yul
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1025-1044
    • /
    • 2009
  • Systematic research has been conducted by KAERI to develop a supercritical carbon dioxide Brayton cycle energy conversion system coupled with a sodium cooled fast reactor. For the development of the supercritical $CO_2$ Brayton cycle ECS, KAERI researched four major fields, separately. For the system development, computer codes were developed to design and analyze the supercritical $CO_2$ Brayton cycle ECS coupled with the KALIMER-600. Computer codes were developed to design and analyze the performance of the major components such as the turbomachinery and the high compactness PCHE heat exchanger. Three dimensional flow analysis was conducted to evaluate their performance. A new configuration for a PCHE heat exchanger was developed by using flow analysis, which showed a very small pressure loss compared with a previous PCHE while maintaining its heat transfer rate. Transient characteristics for the supercritical $CO_2$ Brayton cycle coupled with KALIMER-600 were also analyzed using the developed computer codes. A Na-$CO_2$ pressure boundary failure accident was analyzed with a computer code that included a developed model for the Na-$CO_2$ chemical reaction phenomena. The MMS-LMR code was developed to analyze the system transient and control logic. On the basis of the code, the system behavior was analyzed when a turbine load was changed. This paper contains the current research overview of the supercritical $CO_2$ Brayton cycle coupled to the KALIMER-600 as an alternative energy conversion system.

면내 곡률이 천음속 및 초음속 유체/구조 연계 진동 안정성에 미치는 영향 (Planform Curvature Effects on the Stability of Coupled Flow/Structure Vibration)

  • 김종윤;김동현;이인
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.864-872
    • /
    • 2002
  • In this study, the effect of planform curvature on the stability of coupled flow/structure vibration is examined in transonic and supersonic flow regions. The aeroelastic analysis for the frequency and time domain is performed to obtain the flutter solution. The doublet lattice method(DLM) in subsonic flow is used to calculate unsteady aerodynamics in the frequency domain. For all speed range, the time domain nonlinear unsteady transonic small disturbance code has been incorporated into the coupled-time integration aeroelastic analysis (CTIA). Two curved wings with experimental data have been considered in this paper MSC/NASTRAN is used for natural free vibration analyses of wing models. Predicted flutter dynamic pressures and frequencies are compared with experimental data in subsonic and transonic flow regions.