• Title/Summary/Keyword: Counting Model

Search Result 198, Processing Time 0.028 seconds

A novel method for cell counting of Microcystis colonies in water resources using a digital imaging flow cytometer and microscope

  • Park, Jungsu;Kim, Yongje;Kim, Minjae;Lee, Woo Hyoung
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.397-403
    • /
    • 2019
  • Microcystis sp. is one of the most common harmful cyanobacteria that release toxic substances. Counting algal cells is often used for effective control of harmful algal blooms. However, Microcystis sp. is commonly observed as a colony, so counting individual cells is challenging, as it requires significant time and labor. It is urgent to develop an accurate, simple, and rapid method for counting algal cells for regulatory purposes, estimating the status of blooms, and practicing proper management of water resources. The flow cytometer and microscope (FlowCAM), which is a dynamic imaging particle analyzer, can provide a promising alternative for rapid and simple cell counting. However, there is no accurate method for counting individual cells within a Microcystis colony. Furthermore, cell counting based on two-dimensional images may yield inaccurate results and underestimate the number of algal cells in a colony. In this study, a three-dimensional cell counting approach using a novel model algorithm was developed for counting individual cells in a Microcystis colony using a FlowCAM. The developed model algorithm showed satisfactory performance for Microcystis sp. cell counting in water samples collected from two rivers, and can be used for algal management in fresh water systems.

A Study on Counting Statistics of the Hybrid G-M Counter Dead Time Model Using Monte Carlo Simulations (몬테칼로 전산모사를 이용한 복합 G-M 계수기 불감시간 모형의 계측 통계 연구)

  • Lee, Sang-Hoon;Jae, Moo-Sung
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.269-273
    • /
    • 2004
  • The hybrid dead time model adopting paralyzable (or extendable) and non-paralyzable (or non-extendable) dead times has been introduced to extend the usable range of G-M counters in high counting rate environment and the relationship between true and observed counting rates is more accurately expressed in the hybrid model. GMSIM, dead time effects simulator, has been developed to analyze the counting statistics of G-M counters using Monte Carlo simulations. GMSIM accurately described the counting statistics of the paralyzable and non-paralyzable models. For G-M counters that follow the hybrid model, the counting statistics behaved in between two idealized models. In the future, GMSIM may be used in predicting counting statistics of three G-M dead time models, which are paralyzable, non-paralyzable and hybrid models.

Selection of the Optimal Traffic Counting Links using Integer Program Method for Improving the Estimation of Origin Destination Matrix (기종점 OD행렬의 추정력 향상을 위한 교통량 관측구간 선정)

  • Lee, Heon-Ju;Lee, Seung-Jae;Park, Yong-Kil
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.57-66
    • /
    • 2004
  • When we estimate an origin-destination matrix from traffic counts. origin-destination matrix estimation from traffic counts according to the selected optimal traffic counting links is method for improving the results of origin-destinaation matrix estimation and for increasing economic efficiency. This paper proposed model of selecting traffic counting links using integer program technique, and selected a traffic counting links using this model, and estimated and origin-destingtion matrix from traffic counts according to the selected optimal traffic counting links. Also, we compared a result of estimating origin-destination matrix from the selected optimal traffic counting links using this model to a result of estimating origin-destination matrix from the randomly selected traffic counting links. The error analysis result was more improved a result of origin-destination matrix estimation using this model than a result of randomly selected links.

Development of a novel fatigue damage model for Gaussian wide band stress responses using numerical approximation methods

  • Jun, Seock-Hee;Park, Jun-Bum
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.755-767
    • /
    • 2020
  • A significant development has been made on a new fatigue damage model applicable to Gaussian wide band stress response spectra using numerical approximation methods such as data processing, time simulation, and regression analysis. So far, most of the alternative approximate models provide slightly underestimated or overestimated damage results compared with the rain-flow counting distribution. A more reliable approximate model that can minimize the damage differences between exact and approximate solutions is required for the practical design of ships and offshore structures. The present paper provides a detailed description of the development process of a new fatigue damage model. Based on the principle of the Gaussian wide band model, this study aims to develop the best approximate fatigue damage model. To obtain highly accurate damage distributions, this study deals with some prominent research findings, i.e., the moment of rain-flow range distribution MRR(n), the special bandwidth parameter μk, the empirical closed form model consisting of four probability density functions, and the correction factor QC. Sequential prerequisite data processes, such as creation of various stress spectra, extraction of stress time history, and the rain-flow counting stress process, are conducted so that these research findings provide much better results. Through comparison studies, the proposed model shows more reliable and accurate damage distributions, very close to those of the rain-flow counting solution. Several significant achievements and findings obtained from this study are suggested. Further work is needed to apply the new developed model to crack growth prediction under a random stress process in view of the engineering critical assessment of offshore structures. The present developed formulation and procedure also need to be extended to non-Gaussian wide band processes.

Development of Empirical Formulas for Approximate Spectral Moment Based on Rain-Flow Counting Stress-Range Distribution

  • Jun, Seockhee;Park, Jun-Bum
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.257-265
    • /
    • 2021
  • Many studies have been performed to predict a reliable and accurate stress-range distribution and fatigue damage regarding the Gaussian wide-band stress response due to multi-peak waves and multiple dynamic loads. So far, most of the approximation models provide slightly inaccurate results in comparison with the rain-flow counting method as an exact solution. A step-by-step study was carried out to develop new approximate spectral moments that are close to the rain-flow counting moment, which can be used for the development of a fatigue damage model. Using the special parameters and bandwidth parameters, four kinds of parameter-based combinations were constructed and estimated using the R-squared values from regression analysis. Based on the results, four candidate empirical formulas were determined and compared with the rain-flow counting moment, probability density function, and root mean square (RMS) value for relative distance. The new approximate spectral moments were finally decided through comparison studies of eight response spectra. The new spectral moments presented in this study could play an important role in improving the accuracy of fatigue damage model development. The present study shows that the new approximate moment is a very important variable for the enhancement of Gaussian wide-band fatigue damage assessment.

ASYMPTOTIC RUIN PROBABILITIES IN A GENERALIZED JUMP-DIFFUSION RISK MODEL WITH CONSTANT FORCE OF INTEREST

  • Gao, Qingwu;Bao, Di
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.735-749
    • /
    • 2014
  • This paper studies the asymptotic behavior of the finite-time ruin probability in a jump-diffusion risk model with constant force of interest, upper tail asymptotically independent claims and a general counting arrival process. Particularly, if the claim inter-arrival times follow a certain dependence structure, the obtained result also covers the case of the infinite-time ruin probability.

Automatic Counting of Yeast Cells in Baker's Yeast Culture Using PC Camera and Conventional Light Microscope (PC카메라와 일반광학현미경을 이용한 빵효모 배양액의 효모세포 자동계수)

  • Lee, Hyeong-Choon
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.87-91
    • /
    • 2011
  • Automatic counting of yeast cells in baker's yeast culture was tried using a conventional light microscope equipped with a pc camera. Relatively good binary image was obtained by using white LED as microscope light source, but uneven brightness distribution in original image hindered counting accuracy. A block binarization method using local thresholds proportional to local brightnesses was used to get improved binary images. The brightnesses of the blocks were expressed as the value component in HSV color model. Good quality binary images were obtained by binarization on $8{\times}6$ blocks of original images and connected-component labelling of the binarized images produced reliable counting results in the concentration range $1.4{\times}10^5/mL{\sim}1.4{\times}10^7\;cells/mL$.

WiFi CSI Data Preprocessing and Augmentation Techniques in Indoor People Counting using Deep Learning (딥러닝을 활용한 실내 사람 수 추정을 위한 WiFi CSI 데이터 전처리와 증강 기법)

  • Kim, Yeon-Ju;Kim, Seungku
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1890-1897
    • /
    • 2021
  • People counting is an important technology to provide application services such as smart home, smart building, smart car, etc. Due to the social distancing of COVID-19, the people counting technology attracted public attention. People counting system can be implemented in various ways such as camera, sensor, wireless, etc. according to service requirements. People counting system using WiFi AP uses WiFi CSI data that reflects multipath information. This technology is an effective solution implementing indoor with low cost. The conventional WiFi CSI-based people counting technologies have low accuracy that obstructs the high quality service. This paper proposes a deep learning people counting system based on WiFi CSI data. Data preprocessing using auto-encoder, data augmentation that transform WiFi CSI data, and a proposed deep learning model improve the accuracy of people counting. In the experimental result, the proposed approach shows 89.29% accuracy in 6 subjects.

Research on apply to Knowledge Distillation for Crowd Counting Model Lightweight (Crowd Counting 경량화를 위한 Knowledge Distillation 적용 연구)

  • Yeon-Joo Hong;Hye-Ryung Jeon;Yu-Yeon Kim;Hyun-Woo Kang;Min-Gyun Park;Kyung-June Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.918-919
    • /
    • 2023
  • 딥러닝 기술이 발전함에 따라 모델의 복잡성 역시 증가하고 있다. 본 연구에서는 모델 경량화를 위해 Knowledge Distillation 기법을 Crowd Counting Model에 적용했다. M-SFANet을 Teacher 모델로, 파라미터수가 적은 MCNN 모델을 Student 모델로 채택해 Knowledge Distillation을 적용한 결과, 기존의 MCNN 모델보다 성능을 향상했다. 이는 정확도와 메모리 효율성 측면에서 많은 개선을 이루어 컴퓨팅 리소스가 부족한 기기에서도 본 모델을 실행할 수 있어 많은 활용이 가능할 것이다.

Simulation of Counting Efficiencies of Portable NaI Detector for Rapid Screening of Internal Exposure in Radiation Emergencies (방사선비상시 내부피폭 신속 분류를 위한 휴대용 NaI 검출기의 계측효율 전산모사)

  • Ha, Wi-Ho;Yoo, Jaeryong;Yoon, Seokwon;Pak, Min Jung;Kim, Jong Kyoung
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.211-215
    • /
    • 2015
  • In case of radiation emergencies, radioactive materials released into environments can cause internal exposure of members of the public. Even though whole body counters are widely used for direct measurement of internally deposited radionuclides, those are not likely to be used at the field to rapidly screen internal exposure. In this study, we estimated the counting efficiencies of portable NaI detector for different size BOMAB phantoms using Monte Carlo transport code to apply handheld gamma spectrometers for rapid screening of internal exposure following radiological accidents. As a result of comparison for two counting geometries, counting efficiencies for sitting model were about 1.1 times higher than those for standing model. We found, however, that differences of counting efficiencies according to different size are higher than those according to counting geometry. Therefore, we concluded that when we assess internal exposure of small size people compared to the reference male, the body size should be considered to estimate more accurate radioactivity in the human body because counting efficiencies of 4-year old BOMAB phantom were about 2.4~3.1 times higher than those of reference male BOMAB phantom.