• 제목/요약/키워드: Counterflow

검색결과 264건 처리시간 0.019초

상호작용하는 메탄-수소 예혼합 대향류화염에 관한 연구 (A Study on Interacting $CH_4$-Air and $H_2/N_2$-Air Premixed Counterflow Flames)

  • 문창우;박정;권오붕;배대석;김정수
    • 한국연소학회지
    • /
    • 제15권1호
    • /
    • pp.38-42
    • /
    • 2010
  • Using a counterflow burner, downstream interactions between $CH_4$-air and $H_2/N_2$-Air premixed flames with various equivalence ratios has been experimentally investigated. Flame stability maps on triple and twin flames are provided in terms of global strain rate and equivalence ratio. Lean and rich flammable limits are examined for methane/air and hydrogen/nitrogen/air mixtures over the entire range of mixture concentrations in the interacting flames. Results show that these flammable limits can be significantly modified in the presence of interaction such that mixture conditions beyond the flammability limit can be still burn if it is supported by stronger flame. The experiment also discusses various oscillatory instabilities in a stability map.

에지화염의 자기 진동 (Self-excitation of Edge Flame)

  • 박정;윤성환;정용호;이원준;권오붕
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.167-170
    • /
    • 2012
  • Self-excitations of edge flame were studied in laminar lifted free- and coflow-jet as well as counterflow flames diluted with nitrogen and helium. The self-excitations, originated from variation of edge flame speed and found in the above-mentioned configurations, are discussed. A newly found self-excitation and flame blowout, caused by the conductive heat loss from premixed wings to trailing diffusion flame are described and characterized in laminar lifted jet flames. Some trials to distinguish Lewis-number-induced self-excitation from buoyancy-driven one with O(1.0 Hz) are introduced, and then the differences are discussed. In counterflow configuration, important role of the outermost edge flame in flame extinction is also suggested and discussed.

  • PDF

부력 효과의 최소화를 통한 소화 근처 대향류 확산화염 거동에 관한 실험적 연구 (Experimental Study on Behavior near Extinction in Buoyancy-minimized Counterflow Diffusion Flame)

  • 정용호;박정;권오붕;윤진한;길상인;김태형;김영주
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.23-26
    • /
    • 2012
  • Experimental study was conducted to elucidate flame extinction phenomena in counterflow flame. Using a curtain helium flow significantly reduced buoyancy such that the flame can be positioned at the center between the upper and lower nozzles even at the velocity ratio of 1.0. The curves of critical diluent mole fraction versus global strain rate have C-shapes. The flame oscillation was observed prior to low strain rate flame extinction at both flame conditions with and without minimizing buoyancy force. The results show that, at low strain rate flame, the self-excitation frequency with the order of 1.0 Hz in the case of utilizing pure helium gradually decreases in increase of $N_2$ mole fraction in the curtain flow, meaning that buoyancy suppresses the self-excitation of the outer edge flame.

  • PDF

메탄/공기 예혼합화염에서 CARS를 이용한 CO 농도 및 온도측정과 수치해석 결과의 비교 (Comparison of CARS CO and Temperature Measurements with Numerical Calculation for Methane/Air Premixed Flames)

  • 강경태;정석호;박승남
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1333-1339
    • /
    • 1995
  • Recently developed technique of measuring minor species concentration by using the modulation dip in broadband CARS has been applied to the flame structure study of methane/air premixed flames in a counterflow. This method used the modulation dip from the cold band CO Q-branch resonant signal superimposed on the nonresonant background. The measured CO concentration profile in a symmetric and unsymmetric methane/air premixed flames together with the velocity and temperature by using LDV and CARS have been compared with the numerical results adopting detailed chemistry modeling. The results show that there is a satisfactory agreement between the experimental data and numerical results for velocities, temperatures and CO concentrations. And the modulation dip technique of measuring minor species, such as CO is a viable tool for a quantitative measurement in a flame.

대향류 메탄/공기 예혼합화염의 소염특성에 관한 수치해석적 연구 (A Numerical Study on the Extinction of Methane/Air Counterflow Premixed Flames)

  • 정대헌;정석호
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1982-1988
    • /
    • 1995
  • Methane/Air premixed flames are studied numerically, using a detailed chemical model, to investigate the flame strech effects on the extinction in a counterflow. The finite difference method, time integration and modified Newton iteration are used, and adaptive grid technique and grid smoothing have been employed to adjust the grid system according to the spatial steepness of the solution profiles. Results show that the flame stretch, or the conventional nondimensionalized stretch having the tangential flow characteristics of the stretched flame alone cannot adequately describes the extinction phenomena. On the other hand, the local flame stretch having both the normal and tangential flow characteristics of the stretched flame can give a proper explanation to the extinction of the symmetric planar premixed flames stabilized in a counter flow. The extinction condition were found to be a constant local stretch regardless of the equivalence ratio.

마이크로 채널 판형 열교환기의 3차원 형상에 따른 열전달 특성 및 압력강하 실험 (Experiments on Heat Transfer Characteristics and Pressure Drop in Micro-channel Plate Heat Exchangers with 3D shapes)

  • 서장원;이규정;김윤호;문정은
    • 설비공학논문집
    • /
    • 제20권3호
    • /
    • pp.213-219
    • /
    • 2008
  • Microscale heat transfer and microfluidics have become increasingly important to overcome some very complex engineering challenges. The use of very small passages to gain heat transfer enhancement is a well documented method for achieving high heat flux dissipation. In this study, the performance evaluation of micro-channel plated heat exchangers with straight, V-shaped and Y-shaped channels has been experimentally carried out under the counterflow condition. It is found that the mixing effect in V-shaped and Y-shaped channels enhances the heat transfer but pressure drop does not increase seriously in the range of low Reynolds number.

상호작용하는 대향류 메탄 및 수소 예혼합화염에서 당량비 조건에 따른 상호작용 모드 변화 (Interaction Mode Change According to the Equivalence Ratios in the Interacting Methane and Hydrogen Counterflow Premixed Flames)

  • 박지웅;오창보
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.13-16
    • /
    • 2012
  • The interaction between methane and hydrogen premixed flames with the different equivalence ratio and global strain rate was investigated numerically in one-dimensional counterflow field. The OPPDIF code and GRI-v3.0 were used to simulate the interacting flames. Overall trends in the maximum heat release rates of $CH_4{^-}$ and $H_2$-side flame were examined with the variation of $a_g$. The interaction mode of the flames were classified according to the equivalence ratios and Lewis numbers of each flame and global strain rate.

  • PDF

메탄/공기 대향류 비예혼합화염에서 $C_2HCl_3$의 영향 (The Influence of $C_2HCl_3$ on the $CH_4/Air$ Counterflow Nonpremixed Flames)

  • 이기용
    • 한국연소학회지
    • /
    • 제3권2호
    • /
    • pp.41-50
    • /
    • 1998
  • Numerical simulations of nonpremixed $CH_4/C_2HCl_3$(Trichloroethylene, TCE)/Air flames are conducted at atmospheric pressure in order to understand the effect of hydrocabon bound chlorine on methane/air flames. A chemical kinetic mechanism is employed, the adopted scheme involving 48 gas-phase species and 445 elementray reaction steps containing 223 backward reactions. The calculated temperature, velocity, and critical strain rate are compared with the experiments for the flame (16.1% TCE by Vol.) estabilished at a strain rate of $175s^{-1}$. Whereas there is overall good agreement between predictions and the measurements, it appears that the critical strain rate is higher than measured, and some areas of further refinement in the kinetic mechanism are required.

  • PDF

코일형 흡수기에서 증기 유동 방향이 유하액막 열전달에 미치는 영향 (제1부: 물을 이용한 실험) (Effect of Vapor Flow Direction on Falling Film Heat Transfer in a Coiled Tube Absorber (Part 1: Experiments with Pure Water))

  • 박경진;권경민;정시영;김병주
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.720-729
    • /
    • 2001
  • The effect of vapor flow direction on falling film heat transfer was experimentally investigated by using water. Parallel flow (both water and vapor downwards) showed higher heat exchange performance than counterflow(downward water and upward vapor). The difference became significant as the vapor flow rate was increased. It is supposed that the uprising vapor disturbs the solution film flow and heat transfer is reduced by uneven distribution or detachment of water film.

  • PDF

단일 와동과 상호작용하는 대향류 비예혼합화염 구조에 대한 수치해석 연구 (A Numerical Study on the Structure of a Counterflow Nonpremixed Flame Interacting with a Single Vortex)

  • 오창보;박정;이창언
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.115-120
    • /
    • 2002
  • A two-dimensional direct numerical simulations was peformed to investigate the flame structure of $CH_4/N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed reaction mechanism were adopted in this calculation. To quantify the strain on flame induced by a vortex, a scalar dissipation rate (SDR) is introduced. Results show that the fuel- and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex is extinguished in much larger SDR than steady flame. It was also found that air- side vortex extinguishes a flame more rapidly than fuel -side vortex.

  • PDF