• 제목/요약/키워드: Counter-current flow

검색결과 95건 처리시간 0.028초

휜이 있는 협소 사각 유로에서 대향류 기/액 2상 유동 (Counter-Current Gas-Liquid Two-Phase Flow in Narrow Rectangular Channels with Offset Strip Fins)

  • 손병후;김병주;정시영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.229-234
    • /
    • 2001
  • An adiabatic counter-current vertical two-phase flow of air and water in narrow rectangular channels with offset strip fm was investigated experimentally. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.06 m/s and 0 to 2.5 m/s ranges, respectively. Two-phase flow regimes were classified by examining the video images of flow patterns in transparent test sections of 760 mm long and 100 mm wide channel with gaps of 3.0 and 5.0 mm. The channel average void fraction was measured by the quick-closing valve method. Unlike the flow regimes in the channels without fin, where bubbly, slug, chum, and annular flow were identified, only bubbly and chum flow regimes were found for the channels with offset strip fin. However the existence of fin in the channels showed negligible effects on the void fraction. Instead counter-current flow limitations were found to happen at lower air superficial velocity once offset strip fin was introduced in narrow rectangular channels.

  • PDF

쌍곡선형 이상유동 방정식과 경계면 모양함수를 이용한 유체기계의 역류유동제한점 예측방법 개발 (Counter-Current Flow Limitation Model Based on the Hyperbolic Two-fluid Equations and Interface Shape Function)

  • 정지환
    • 한국산학기술학회논문지
    • /
    • 제1권1호
    • /
    • pp.15-22
    • /
    • 2000
  • 다상유체의 작동에 의해서 그 기능을 수행하는 산업기계는 매우 광범위하게 이용된다. 이들 중 일부는 서로 분리된 2상 유체가 반대방향으로 흐르는 특성을 이용하고 있다. 서로 반대방향으로 흐르는 액체상과 기체상의 최대 유량은 역류유동제한 현상으로 제한된다. 이상유동의 질량 및 운동량 보존 방정식을 세우고 쌍곡선형 방정식이 시스템의 특성방정식으로부터 역류유동제한 현상을 예측할 수 있는 모델을 개발하였다. 현재의 모델은 액체상 유입부의 기하학적 모양이 수직이거나 이와 유사한 형태로 되어 있어서 주변에 비등류가 형성되는 경우에 적용된다. 이 모델은 액체와 기체 사이의 질량전달을 일으키는 기계에 대한 유체역학적 운전제한 조건으로 이용될 수 있다.

  • PDF

The Effect of Gap Size on Counter Current Flow Limitation Phenomena in Narrow Annular Gaps with Large Diameter

  • Jeong, Ji-Hwan;Lee, Seung-Jin;Park, Rae-Joon;Kim, Sang-Baek
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.396-405
    • /
    • 2002
  • An experimental study on counter-current flow limitation phenomena in narrow annular passages was carried out The gap sizes tested were 1, 2 and 3 mm. This is very small compared with the outer diameter of the annular passage, 500 mm. It was visually observed that a CCFL might occur in some part of the periphery while the other part is remained in a counter current flow pattern. That is, non-uniform behaviour of fluids due 4o a 2-dimensional effect appear in a large diameter facility. Because of this non-uniformity, a CCFL is defined in the present work as the situation where net water accumulation is sustained. That is, some amount of water should not be allowed to penetrate the gap and accumulate over the gap at CCFL criterion. The measured data are presented in the form of Wallis'type correlation with characteristic length of gap size. It was found that the present correlation is in good agreement with other empirical correlation based on measurements whose test section diameter is close and the gap size is much larger than that of the present test section.

Two-Phase Flow Regimes for Counter-Current Air-Water Flows in Narrow Rectangular Channels

  • Kim, Byong-Joo;Sohn, Byung-Hu;Siyoung Jeong
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.941-950
    • /
    • 2001
  • A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760mm long and 100mm wide test section with 2.0 and 5.0mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition become pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant.

  • PDF

유하액막식 암모니아 흡수기에서 증기 유동방향에 따른 열 및 물질전달 특성 (Heat and Mass Transfer Characteristics of a Falling Film Ammonia Absorber with Respect to the Vapor Flow Direction)

  • 권경민;정시영;김병주;정은수
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.16-25
    • /
    • 2004
  • The flow and heat/mass transfer in the falling-film of a heat exchanger can be influenced by the motion of the surrounding refrigerant vapor. In this study, the effect of the vapor flow direction on the absorption heat transfer has been investigated for a falling-film helical coil which is frequently used as the absorber of ammonia/water absorption refrigerators. The experiments were carried out for different solution concentration. The heat and mass transfer performance was measured for both parallel and counter-current flow. The effect of vapor flow on the heat and mass transfer is found to be increased with decreasing solution concentration. In the experiments with low solution concentration, whose vapor specific volume is great, the counter-current flow of vapor resulted in uneven distribution of falling-film and reduced the heat transfer performance of the absorber. The direction of the vapor flow hardly affected the thermal performance as the solution concentration became stronger since the specific volume of the ammonia/water vapor was much smaller than that of the water vapor.

협소 사각 유로에서 대향류 기/액 2상 유동양식 (Counter-Current Gas-Liquid Two-Phase Flow Regimes in Narrow Rectangular Channels)

  • 손병후;김병주;정시영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.136-141
    • /
    • 2000
  • A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally studied in 760 mm long and 100 mm wide test sections with 2.0 and 3.0mm gaps. The resulting data have been compared to previous transition models. For the transition from bubbly to slug flow the superficial velocity of gas increased as the gap width increased. The comparison of experimental data to the transition model developed by Taitel and Barnea showed relatively good agreement for the bubbly-to-slug transition in the case of 2mm gap width. For the criteria of Mishima and Ishii to be applicable to the slug-to-churn transition the distribution parameter should be well defined for narrow channels. Even though the gap width of narrow channels increased the superficial gas velocity did not change for the transition form chum to annular flow regime. For the chum-to-annular transition the model of Taitel and Barnea showed discrepancies with experimental data, especially in the channel with larger gap.

  • PDF

Visualization of micro-interfacial conditions using Micro PIV

  • OKAMOTO Koji;SHINOHARA Kyosuke;SUGII Yasuhiko
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.111-118
    • /
    • 2004
  • A new micro-resolution PIV (Particle Image. Velocimetry) has been developed. To investigate transient phenomena in a microfluidic device, Dynamic micro-PIV system was realized by combining a high-speed camera and a CW(Continuous Wave) laser. The technique was applied to a micro-counter-current flow, consisting of water and butyl acetate. The velocity fields of water in the micro counter-current flow were visualized for a time resolution of 500 $\{mu}s$ and a spatial resolution of 2.2 x 2.2 $\{mu}m$. Using the Dynamic micro-PIV technique, the vortex-like motions of fluorescent particles at the water-butyl acetate interface were captured clearly

  • PDF

Counter-Current Air-Water Flow in Narrow Rectangular Channels With Offset Strip Fins

  • Kim, Byong-Joo;Sohn, Byung-Hu;Koo, Kee-Kahb
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.429-439
    • /
    • 2003
  • Counter-current two-phase flows of air- water in narrow rectangular channels with offset strip fins have been experimentally investigated in a 760 mm long and 100 mm wide test section with 3.0 and 5.0 mm gap widths. The two-phase flow regime, channel-average void fractions and two-phase pressure gradients were studied. Flow regime transition occurred at lower superficial velocities of air than in the channels without fins. In the bubbly and slug flow regimes, elongated bubbles rose along the subchannel formed by fins without lateral movement. The critical void fraction for the bubbly-to-slug transition was about 0.14 for the 3 mm gap channel and 0.2 for the 5 mm gap channel. respectively. Channel-average void fractions in the channels with fins were almost the same as those in the channels without fins. Void fractions increased as the gap width increased, especially at high superficial velocity of air. The presence of fins enhanced the two-phase distribution parameter significantly in the slug flow, where the effect of gap width was almost negligible. Superficial velocity of air dominated the two-phase pressure gradients. Liquid superficial velocity and channel gap width has only a minor effect on the pressure gradients.

다공판 유로 내의 유동한계(CCFL)에 대한 실험적 연구 (The Experimental Study on The Counter-Current Flow Limit in The Flow Path with a Porous Plate)

  • 양승우;이진기;권정태;김상녕;강용태
    • 설비공학논문집
    • /
    • 제19권2호
    • /
    • pp.156-161
    • /
    • 2007
  • A set of experiments of counter-current flow limit (CCFL) was performed to improve the drawbacks of Wallis' correlation which neglected the effects of channel size, channel length, injection method and the boundary conditions at the inlet of liquid and gas phase. In this study, CCFL was observed by changing the shape of porous plate using air and water. The results show that as the size of porous increases, CCFL with a round shape of the porous plate start to disappear, In this study, the CCFL correlation was calculated and the corresponding CCFL map was developed based on the experimental results.

암모니아-물 흡수식 시스템에서 유하액막식 발생기의 해석 (Analysis of Falling-film Generator in Ammonia-water Absorption System)

  • 김병주;손병후;구기갑
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.422-430
    • /
    • 2001
  • In the present study, an evaporative generation process of ammonia-water solution film on the vertical plate was analysed. For the utilization of waste heat, hot water of low temperature was used as the heat source. The continuity, momentum, energy and diffusion equations for the solution film and vapor mixture were formulated in integral forms and solved numerically. Counter-current solution-vapor flow resulted in the refrigerant vapor of the higher ammonia concentration than that of co-current flow. Eve the rectification of refrigerant vapor was observed near the inlet of solution film in counter-current flow. For the optimum operation of generator using hot water, numerical experiments, based on the heat exchange and generation efficiencies. revealed the inter-relationships among the Reynolds number of the solution film and hot water, and the length of generator. Enhancement of heat and mass transport in the solution film was found to be very effective for the improvement of generation performance, especially at high solution flow rate.

  • PDF