• Title/Summary/Keyword: Counter pulsation control (CPC)

Search Result 1, Processing Time 0.018 seconds

Analysis of the Impact of Reflected Waves on Deep Neural Network-Based Heartbeat Detection for Pulsatile Extracorporeal Membrane Oxygenator Control (반사파가 박동형 체외막산화기 제어에 사용되는 심층신경망의 심장 박동 감지에 미치는 영향 분석)

  • Seo Jun Yoon;Hyun Woo Jang;Seong Wook Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.128-137
    • /
    • 2024
  • It is necessary to develop a pulsatile Extracorporeal Membrane Oxygenator (p-ECMO) with counter-pulsation control(CPC), which ejects blood during the diastolic phase of the heart rather than the systolic phase, due to the known issues with conventional ECMO causing fatal complications such as ventricular dilation and pulmonary edema. A promising method to simultaneously detect the pulsations of the heart and p-ECMO is to analyze blood pressure waveforms using deep neural network technology(DNN). However, the accurate detection of cardiac rhythms by DNNs is challenging due to various noises such as pulsations from p-ECMO, reflected waves in the vessels, and other dynamic noises. This study aims to evaluate the accuracy of DNNs developed for CPC in p-ECMO, using human-like blood pressure waveforms reproduced in an in-vitro experiment. Especially, an experimental setup that reproduces reflected waves commonly observed in actual patients was developed, and the impact of these waves on DNN judgments was assessed using a multiple DNN (m-DNN) that provides accurate determinations along with a separate index for heartbeat recognition ability. In the experimental setup inducing reflected waves, it was observed that the shape of the blood pressure waveform became increasingly complex, which coincided with an increase in harmonic components, as evident from the Fast Fourier Transform results of the blood pressure wave. It was observed that the recognition score (RS) of DNNs decreased in blood pressure waveforms with significant harmonic components, separate from the frequency components caused by the heart and p-ECMO. This study demonstrated that each DNN trained on blood pressure waveforms without reflected waves showed low RS when faced with waveforms containing reflected waves. However, the accuracy of the final results from the m-DNN remained high even in the presence of reflected waves.