• Title/Summary/Keyword: Counter Rotating Vortex

Search Result 58, Processing Time 0.033 seconds

Velocity and temperature Visualization of Air Convection in Differently Heated Rectangular Cavity with Upper channel (상부채널을 갖는 사각공간에서 열유속 변화에 따른 공기대류의 속도와 온도 가시화)

  • Lee, Cheol-Jae;Chung, Han-Shik;Park, Chan-Su;Cho, Dae-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.290-295
    • /
    • 2000
  • An experimental study was carried out in a cavity with upper channel and square heat surface by visualization equipment with Mach-Zehnder interferometer and laser apparatus. The visualization system consists of 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000). Obtained result showed various flow patterns. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach-Zehnder are also compared in terms of constant heat flux.

  • PDF

A Comparison of the Effect of Tabs-Direction and Surface Roughness of Nozzle Surface on Supersonic Jet Flowfields (탭의 방향과 노즐내부 표면 거칠기가 초음속제트 유동장에 미치는 영향의 비교에 관한 연구)

  • Jin, Won-Jin;Cho, Chang-Kwun;Lee, Yeol
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.525-530
    • /
    • 2000
  • The effects of vortex generators, in the form of small tabs projecting into the flow at the axisymmetric supersonic nozzle exit and triangular thin tapes attached on the inner surface at the nozzle exit, on the characterixtics of supersonic mixing enhancements are experimentally investigated. Delta-shaped tabs as small as 1% of the nozzle exit area produce strong counter-rotating vortices, and is found to produce significant effects on the jet flowfield downstream of the nozzle. The effects is larger on the under-expanded cases than over- and perfect-expanded cases. Nozzle inner surface roughness also can do a role of centerline pressure decay for highly under-expanded jet cases. The effects of the angle of tabs with respect to flow direction are also investigated.

  • PDF

An experimental study on the wake structure behind a van type vehicle (Van형 자동차의 후류구조에 대한 실험적 해석(와류 형성을 중심으로))

  • 성봉주;장병희
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.51-59
    • /
    • 1988
  • The wake structure behind a van type vehicle was studied experimentally with a 5-hole yawhead probe. Through an effective calibration method of the 5-hole yawhead probe, the flow properties such as velocity vector, total pressure and static pressure were obtained on two cross sections within the wake. These results combined with the surface flow visualization performed in the previous study, yielded some information about the wake structure. When the model was placed in a stream with zero yaw angle, two counter rotating vortices were observed behind the model which pull down the surface flow on each side of the model. With increasing the yaw angle, the surface flow on the windward side changed to divide the flow in two directions, one flows upward on the upper part and the other flows downward on the lower part of the windward side. Hence a new weak vortex was created on the upper windward side, which resulted 3 vortices within the wake. The size and the strength of the vortices increased with yaw angle.

  • PDF

Velocity and Temperature Visualization of Air Convection in Differently Heated Rectangular Cavity with Upper Channel (상부채널을 갖는 사각공간에서 열유속 변화에 따른 공기대류의 속도와 온도 가시화)

  • Lee, C.J.
    • Solar Energy
    • /
    • v.20 no.4
    • /
    • pp.53-60
    • /
    • 2000
  • An experimental study was carried out in a cavity with upper channel and square heat surface by visualization equipment with Mach-Zehnder interferometer and laser apparatus. The visualization system consists of 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000). Obtained result showed various flow patterns. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach-Zehnder are also compared in terms of constant heat flux.

  • PDF

Velocity Measurement around Ramp Injector in Supersonic Flow

  • Koike, Shunsuke;Suzuki, Kentaro;Hirota, Mitsutomo;Takita, Kenichi;Masuya, Goro;Matsumoto, Masashi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.117-124
    • /
    • 2004
  • The mixing enhancement is one of the most important problems for the development of scramjet engines. The influence of the streamwise vortices produced by a ramp in a unheated supersonic flow on the mixing of twin jets injected from its base was experimentally investigated. Nominal Mach number of the main airstream and of the twin jets at the nozzle exits were 2.35 and 2.0, respectively. Three dimensional velocity distributions near the ramp with and without injection were measured by Particle Image Velocimetry (PIV). A pair of counter rotating streamwise vortices could be seen behind the injector without injection. On the other hand, two pairs of streamwise vortices could be seen with injection. The outer one had the same direction as the vortex pair produced by the ramp, but they were stronger than those produced by the ramp. The inner ones had the opposite directions to the outer ones. It is considered that these vortices enhance the mixing near the injector.

  • PDF

Computational Simulation of Coaxial eVTOL Aircraft in Ground Effect (동축 반전 전기동력 수직이착륙기의 지면 효과에 대한 전산해석)

  • Yang, Jin-Yong;Lee, Hyeok-Jin;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.599-608
    • /
    • 2022
  • Urban air mobility (UAM) equipped with rotor system is subject to ground effect at vertiport during takeoff and landing. The aerodynamic performance of the aircraft in ground effect should be analyzed for the safe operation. In this study, The ground effects on the aerodynamic performance and wake structure of the quadcopter electric vertical takeoff and landing (eVTOL) configuration equipped with coaxial counter-rotating propellers were investigated by using the lattice Boltzmann method (LBM). The influence of the ground effect was observed differently in the upper and lower propellers of the coaxial counter-rotating propeller system. There was no significant change in the aerodynamic performance of the upper propeller even if the propeller height above the ground was changed, whereas the averaged thrust and torque of the lower propeller increased significantly as propeller height decreased. In addition, the amplitude of the thrust fluctuation tended to increase as the propeller height decreased. The propeller wake was not sufficiently propagated downstream and was diffused along the ground due to the outwash flow developed by the ground effect. The impingement of the rotor wakes on the ground and a fountain vortex structure were observed.

Unsteady RANS computations of turbulent flow in a high-amplitude meandering channel (고진폭 만곡수로에서 난류흐름의 비정상 RANS 수치모의)

  • Lee, Seungkyu;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.89-97
    • /
    • 2017
  • Turbulent flow structure in the high amplitude meandering channel is complex due to secondary recirculation with helicoidal motions and shear layers formed by flow separation from the curved sidewall. In this work, the secondary flow and the superelevation of the water surface produced in the high-amplitude Kinoshita channel are reproduced by the unsteady Reynolds-averaged Navier-Stokes (RANS) computations using the VOF technique for resolving the variation of water surface elevation and three statistical turbulence models ($k-{\varepsilon}$, RNG $k-{\varepsilon}$, $k-{\omega}$ SST). The numerical results computed by a second-order accurate finite volume method are compared with an existing experimental measurement. Among applied turbulence models, $k-{\omega}$ SST model relatively well predicts overall distribution of the secondary recirculation in the Kinoshita channel, while all three models yield similar prediction of water superelevation transverse slope. The secondary recirculation driven by the radial acceleration in the upstream bend affects the flow structure in the downstream bend, which yields a pair of counter-rotating vortices at the bend apex. This complex flow pattern is reasonably well reproduced by the $k-{\omega}$ SST model. Both $k-{\varepsilon}$ based models fail to predict the clockwise-rotating vortex between a pair of counter-rotating vortices which was observed in the experiment. Regardless of applied turbulence models, the present computations using the VOF method appear to well reproduce the superelevation of water surface through the meandering channel.

PIV Measurements of Hull Wake behind a Container Ship Model with Varying Loading Condition and Reynolds number (선박 모형의 하중 (loading)조건 및 Reynolds 수의 변화에 따른 선미 반류의 PIV 속도장 측정)

  • Lee Jung-Yeop;Paik Bu-Geun;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.54-57
    • /
    • 2005
  • Flow characteristics of hull wake behind a container ship model were investigated experimentally with varying loading condition and Reynolds number. Large-scale bilge vortices of nearly the same strength are formed in the near-wake region. They are symmetric and counter-rotating with respect to the wake centerline for all loading conditions tested. With going downstream for both design and ballast loading conditions, the strength of the bilge vortices decreases and the wake region expands due to diffusion and viscous dissipation. Under the design loading condition, the bilge vortices start to appear at St=0.363 transverse plane above the propeller-boss. For the ballast loading condition, however, the bilge vortices start to appear at St=0.591 below the propeller-boss. They move upward as the hull wake goes downstream and Reynolds number increases. These wake characteristics, under the ballast loading condition, may weaken the propulsion and cavitation performances of the propeller, which are usually optimized for the design loading condition.

  • PDF

A study on Flow Characteristics of the Semi-Circular inlet S-Shaped Intake at Various Angle of Incidence (입사각에 따른 반원형 입구형상 S-Shaped Intake에 대한 유동특성 연구)

  • Lee, Jihyeong;Cho, Jinsoo
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • Air intakes are an essential component of aircraft engines. They are mainly used to offer uniform airflows to engine faces. Fighter aircraft have to mask the engine face inside the fuselage in order to reduce the Radar Cross Section(RCS). Therefore, offset intakes like a S-Duct are one of promising components for this purpose. During a fight, it is unavoidable that the flow will enter the intakes at some face angles other than zero. In this case, the performance of the aircraft engine will be influenced to the angle of incidence. In this study, the CFD analysis of the semi-circular S-Duct with AR(0.5,0) is performed to investigate the influence of the angle of incidence on the performance of the S-Duct using a distortion coefficient. To consider the adverse pressure gradient, a $k-{\omega}$ SST turbulence model is employed. The secondary flow and flow separation are observed for all computational cases. It is found that the positive incidence angle produces the best performances.

Analysis on the In-cylinder Flow of HIMSEN 6H21/32 Engine (HIMSEN 6H21/32 엔진 실린더 내 유동해석)

  • Yoon, Wook-Hyun;Kim, Jin-Won;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.934-939
    • /
    • 2001
  • In computational study of the flow in piston engines and the flow through moving valves, the use of moving vertices is essential for modelling flows with moving boundaries. The positions of cell vertices in such cases must be allowed to vary with time. To simulate 3-dimensional port-valve and piston-cylinder of HIMSEN 6H21/32 engine, a commercially available code, STAR-CD, was used. Changes in mesh geometry was specified by PROSTAR commands.(i.e. the Change Grid operation in the EVENTS command module.) Control of the intake flow is expected to play an important role as designers seek to obtain better fuel spray characteristics, fuel mixing and mixture preparation, combustion performance, and emissions reductions to meet national standards. As a result of analysis, velocity fields indicate the presence of a structured flow comprised of one pair of counter-rotating vortices under the intake valve during the early induction process. These flow structures remain visible for most of the intake process. As the piston moves towards BDC, these vortices develops into a larger tumbling motion that dominates the flow structure.

  • PDF