• Title/Summary/Keyword: Count Suffix Tree

Search Result 1, Processing Time 0.015 seconds

Estimation of Substring Selectivity in Biological Sequence Database (생물학 서열 데이타베이스에서 부분 문자열의 선적도 추정)

  • 배진욱;이석호
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.168-175
    • /
    • 2003
  • Until now, substring selectivities have been estimated by two steps. First step is to build up a count-suffix tree, which has statistical information about substrings, and second step is to estimate substring selectivity using it. However, it's actually impossible to build up a count-suffix tree from biological sequences because their lengths are too long. So, this paper proposes a novel data structure, count q-gram tree, consisting of fixed length substrings. The Count q-gram tree retains the exact counts of all substrings whose lengths are equal to or less than q and this tree is generated in 0(N) time and in site not subject to total length of all sequences, N. This paper also presents an estimation technique, k-MO. k-MO can choose overlapping length of splitted substrings from a query string, and this choice will affect accuracy of selectivity and query processing time. Experiments show k-MO can estimate very accurately.