• Title/Summary/Keyword: Cotton linter

Search Result 19, Processing Time 0.024 seconds

Study on the Beating Properties of CMC Pre-treated and Mixed Cotton Linter Pulp (제지용 면 펄프의 CMC 전처리 및 혼합 고해특성 연구)

  • Shin, Hyeon-Sik;Lee, Jin-Ho;Kim, Duk-Ki;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.4
    • /
    • pp.11-20
    • /
    • 2014
  • The objective of this study was to investigate the beating properties of two types of cotton pulps such as "cotton lint mixed pulp" and "cotton linter pulp". In order to improve refining characteristics, the effects of carboxymethyl-cellulose (CMC) pre-treatment, mixing ratio changes of cotton lint mixed pulp and cotton linter pulp, and refining load changes were analyzed. In mill application, it was possible to improve the refining characteristics and maintained the strength properties of the paper by applying increasing ratio of cotton linter pulp mixing and controlling the refining methods.

Development of Auto-hydrolysis Method for Preparing Cotton Linter Regenerated Fibers of Textile Fabrics (방직용 재생펄프 제조를 위한 면 린터의 자기가수분해 공정 개발)

  • Sohn, Ha Neul;Park, Hee Jung;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.81-88
    • /
    • 2015
  • The molecular weight (MW) and crystallinity of cotton linter need to be controlled to be dissolved well in N-methylmorpholine N-oxide (NMMO) solvent for manufacturing regenerated fibers of clothing fabrics. Electron beam irradiation or sulfuric acid pre-treatment followed by alkaline peroxide bleaching has been used to control MW effectively and to improve brightness of cotton linter. Auto-hydrolysis of cotton linter without electron beam irradiation or chemical pre-treatment was found to be effective as an alternative pre-treatment method. Removal of metal ions, that hampered dissolution of cotton linter by NMMO, was also investigated when the auto-hydrolysis was accompanied with ionic polymers and chelating agent.

Cotton Linter Crystallinity Variations Caused by Electron Beam Irradiation and Acid Treatment (물리화학적 처리에 의한 린터의 결정성 변화에 관한 연구)

  • Park, Hee Jung;Sohn, Ha Neul;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.4
    • /
    • pp.37-43
    • /
    • 2014
  • The crystallinity and molecular weight of cotton linter need to be controlled to be more easily dissolved in NMMO during manufacture of clothing fabrics. Electron beam irradiation and sulfuric acid treatment were used as pre-treatment to reduce molecular weight of cotton linter more efficiently, and after the pre-treatment, peroxide bleaching was followed in alkaline condition. After those processes, the crystalline indices of the cotton linters were measured by XRD method, and other properties such as their alpha cellulose contents and degree of polymerization were measured. It was found that the crystallinity index of cotton linter was decreased as the irradiation of electron beam increased while increased as the dose of sulfuric acid increased. These results strongly suggested that electron beam damaged the crystalline structure of the cellulose directly while sulfuric acid dissolved mostly non-crystalline area of the cellulose structure.

The Separated Refining System for Cotton Staple and Linter Fibers: Refining Efficiency and Paper Properties (스테이플 및 린터 면 섬유의 분리 고해 특성에 관한 연구: 고해 효율과 종이 물성)

  • 윤성훈;이영석;김태영;김진영
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.4
    • /
    • pp.8-16
    • /
    • 2003
  • The objective of this study was to investigate the potential application of the separated refining system in the papermaking process using cotton pulps. The cotton staple and linter fibers were expected to show a great difference in their refining responses due to their morphological and physical differences. Experiments were conducted to examine the differences in flocculation tendency, CED viscosity, fiber length, handsheet properties and the SEM surface images between staple and linter fibers at a given refining degree. These fibers were also subjected to separated refining in a laboratory-scale beater and in a mill-scale refiner as well. The effect of the separated refining on the refining rates and papermaking properties were evaluated. Results obtained are summarized as follows: 1. Fiber flocculation tendency of cotton staple was estimated to be significantly greater than that of linter fibers; 2. The staple fibers showed higher cellulose DP, longer fiber length and higher sheet strength at a given refining degree compared to linter fibers, but remarkably slower refining rate was observed; 3. The separated refining system exhibited a significant increase in sheet strengths, especiauy in folding endurance, with an increase in the fibrillation on the surface of staple fibers, but slightly lower or comparable fiber length after refining to the mixed refining system; 4. Similar results were also obtained from the machine trial in which about 7-8% energy saving effects were achived in the separated refining system. On the basis of the results observed in this study, it was concluded that a significant increase in paper strength and a substantial reduction in refining energy consumption could be achieved using the separated refining system for the cotton staple and linter fiber stock refining.

A Physico-chemical Change of Dissolving Pulp by Dry Milling and Fractionation (건식분쇄와 분급에 의한 용해용 펄프의 특성변화)

  • Kim, Taeyoung;Lee, Songmin;Heo, Yongdae;Kim, Jinyoung;Joung, Yangjin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.23-32
    • /
    • 2015
  • In this study, chemical and physical changes of dissolving pulps which have similar viscosity by dry milling and fractionation were investigated. We used two types of dissolving pulp made from wood and cotton linter fiber, respectively. Dry milling was executed by knife cutter and pulp powders were fractionated by sieve shaker into 4 grades. We analyzed fiber properties, crystallinity index, viscosity, molecular weight of pulp sheet and powders. It was found that poly-dispersity index of cotton linter pulp was smaller than that of wood pulp, meaning that cotton pulp has more narrow molecular weight distribution. It was assumed that these were related to exposure times to chemical treatment which cut cellulose chains not evenly. At least 4 times of chemical treatments for wood pulp were executed and only two times of chemical treatments for cotton linter pulp were done. After dry milling average molecular weight and crystallinity index of cotton linter pulp powders were reduced and these were related to fines content and shape of pulp powders.

Changes of Handsheet Fracture Toughness by Wood and Cotton Fibers Mixing (목재섬유와 면섬유의 혼합에 따른 수초지의 파괴인성 변화)

  • Kim, Jeong-Jung;Jang, Dong-Uk;Yoon, Sang-Gu;Shin, Hyeon-Sik;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.81-87
    • /
    • 2014
  • Conditions of paper manufacturing process should be changed depending on the end use and paper properties. Most of the case, mixed pulps with long softwood fibers and short hardwood fibers are used to achieve proper qualities of product with reasonable production cost. For specialty paper manufacture the wood pulp and cotton linter pulp are usually mixed together. The objectives of this study is to analyze physical, mechanical and fracture mechanical properties of paper depending on SwBKP, HwBKP and cotton linter pulp(CLP) mixing. When the mixing ratio of SwBKP was increased, strength properties, such as tensile, tear, and folding endurance, were also increased. When the mixing ratio of SwBKP and HwBKP was increased, stress concentration index was decreased and fracture toughness was increased.

Evaluation of Beatability of Two Kinds of Cotton Linter Pulps (면 린터 펄프 종류에 따른 고해적성 평가)

  • Shin, Hyeon-Sik;Park, Jong-Moon;Lee, Jin-Ho;Kim, Jeong-Jung;Kil, Jung-Ha
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.5
    • /
    • pp.56-63
    • /
    • 2013
  • In this study, paper mill applicability of two kinds of cotton pulps which have different initial freeness, fiber length and intrinsic fiber strength were investigated. Basic properties such as CED viscosity, fiber length, and crystallinity of major two kinds of cotton pulps were analyzed, and beatability of cotton pulps and physical properties of handsheet made from two kinds of cotton pulps were compared. Laboratory beating was performed at different refining conditions such as refining loads and freenesses. Relationship between beating degree and physical properties of handsheet were compared to seek optimum condition of refining for different cotton pulps application to paper mill.

Study of cotton linter pre-treatment process for producing high quality regenerated fibers for fabrics (방직용 고품질 재생섬유 제조를 위한 면린터 전처리공정에 관한 연구)

  • Park, Hee Jeong;Han, Jung Su;Son, Ha Neul;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.3
    • /
    • pp.27-35
    • /
    • 2013
  • Cotton linter pre-treatment methods using electron beam and sulfuric acid were investigated to prepare high quality regenerated fibers for fabrics. So far, NaOH was used to reduce the degree of polymerization (DP) of the cotton linter for ease of dissolving by cellulose solvent. Two pre-treatment methods were developed to reduce the consumption of the chemicals (NaOH) and to control the DP of cellulose more precisely. Changes in ${\alpha}$-cellulose contents and brightness by the pre-treatments were also important concerns. Both electron beam irradiation and sulfuric acid were shown to be effective on controlling the DP of cellulose and to reduce the chemical consumption, but reduced ${\alpha}$-cellulose contents as well in this study. Sulfuric acid pre-treatment, which needed additional washing process after the pre-treatment when comparing to the electron beam irradiation method, gave the highest brightness and the highest reduction of ${\alpha}$-cellulose content.

The efect of freeness and paper physical properties treated with high and low molecular weight cellulase in the different surface pore sized fibers (Cellulase의 분자량과 섬유소의 표면공극 상이성이 여수도 및 종이의 강도적 특성에 미치는 영향)

  • 김병현;신종순;강영립;어영호
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.141-155
    • /
    • 2000
  • To examine how the difference of molecular weight distribution of cellulase influenced the beating process according to surface pore size of the fiber, high molecular weight enzyme and low one were applied to soft wood pulp, hard wood pulp, cotton linter pulp. Some enzymes with the distribution of low molecular weight penetrated into cellulose in the proportion of surface pore size and the results were negative as like : the low viscosity, decrease of refining Yield, decrease of fine fibers content and so on. But in cotton linter pulp in the small surface area, the fiber softness was increased and it had a positive result that the paper intensity was high. Other enzymes with the distribution of high molecular weight had an enzyme reaction on the most surfaces of cellulose. They were effective in eliminating the fuzz of hydrophile fine fibers and the freeness was increased.

  • PDF

Effects of electron beam treatment on cotton linter for the preparation of nanofibrillated cellulose

  • Le, Van Hai;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.68-74
    • /
    • 2016
  • Nanofibrillated cellulose (NFC) was prepared from cotton linter after electron beam irradiation to investigate its effects on the manufacturing efficiency of the NFC preparation and the property changes by the treatment. Mechanical device (Super Masscolloider) was used to prepare the NFC and its passing frequency for each NFC preparation was recorded. More electron beam irradiation resulted in less passing frequency. Alpha cellulose content, molecular weight, crystallinity index, and thermal decomposition behavior of each treatment were lowered by electron beam treatment (10 and 100 kGy) and grinding process. NFC films were prepared to investigate their mechanical properties. There were little changes in tensile properties of the NFC films.