• Title/Summary/Keyword: Costs analysis

Search Result 3,581, Processing Time 0.039 seconds

Regeneration of a defective Railroad Surface for defect detection with Deep Convolution Neural Networks (Deep Convolution Neural Networks 이용하여 결함 검출을 위한 결함이 있는 철도선로표면 디지털영상 재 생성)

  • Kim, Hyeonho;Han, Seokmin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.23-31
    • /
    • 2020
  • This study was carried out to generate various images of railroad surfaces with random defects as training data to be better at the detection of defects. Defects on the surface of railroads are caused by various factors such as friction between track binding devices and adjacent tracks and can cause accidents such as broken rails, so railroad maintenance for defects is necessary. Therefore, various researches on defect detection and inspection using image processing or machine learning on railway surface images have been conducted to automate railroad inspection and to reduce railroad maintenance costs. In general, the performance of the image processing analysis method and machine learning technology is affected by the quantity and quality of data. For this reason, some researches require specific devices or vehicles to acquire images of the track surface at regular intervals to obtain a database of various railway surface images. On the contrary, in this study, in order to reduce and improve the operating cost of image acquisition, we constructed the 'Defective Railroad Surface Regeneration Model' by applying the methods presented in the related studies of the Generative Adversarial Network (GAN). Thus, we aimed to detect defects on railroad surface even without a dedicated database. This constructed model is designed to learn to generate the railroad surface combining the different railroad surface textures and the original surface, considering the ground truth of the railroad defects. The generated images of the railroad surface were used as training data in defect detection network, which is based on Fully Convolutional Network (FCN). To validate its performance, we clustered and divided the railroad data into three subsets, one subset as original railroad texture images and the remaining two subsets as another railroad surface texture images. In the first experiment, we used only original texture images for training sets in the defect detection model. And in the second experiment, we trained the generated images that were generated by combining the original images with a few railroad textures of the other images. Each defect detection model was evaluated in terms of 'intersection of union(IoU)' and F1-score measures with ground truths. As a result, the scores increased by about 10~15% when the generated images were used, compared to the case that only the original images were used. This proves that it is possible to detect defects by using the existing data and a few different texture images, even for the railroad surface images in which dedicated training database is not constructed.

Changes in Growth and Yield of Different Rice Varieties under Different Planting Densities in Low-Density Transplanting Cultivation (벼 드문모심기 재식밀도에 따른 품종별 생육 및 수량 변이)

  • Yang, SeoYeong;Hwang, WoonHa;Jeong, JaeHyeok;Lee, HyeonSeok;Lee, ChungGeun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.279-288
    • /
    • 2021
  • Low-density transplanting is a cultivation technology that reduces labor and production costs. In this study, the growth and yield of several varieties with different tillering characteristics were analyzed in order to establish an appropriate planting density for low-density transplanting. Varieties with Low-Tillering (LT), Medium-Tillering (MT), and High-Tillering (HT) were planted at a density of 37-80 hills/3.3 m2. As the planting density decreased, the number of tillers per hill increased, but the number of tillers per square meter of hill decreased, especially for the LT variety. Decreasing density extended the tillering stage, which was longest in the LT variety. As the planting density decreased, SPAD(Soil plant analysis development, chlorophyll meter) values just before heading increased while canopy light interception decreased. Such changes were much greater in the LT variety than in the MT and HT varieties. The heading date tended to be delayed by 0-2 days as the planting density decreased, and there was no difference in the length of the period from first heading to full heading. As the number of spikelets per panicle increased, the number of spikelets per square meter did not differ according to the planting density. Decreasing planting density did not affect the grain weight; nevertheless, the yield ultimately decreased because of the decreasing ripening rate. The optimal planting density for stable low-density transplanting cultivation was determined to be over 50 hills/3.3 m2. In addition, these results suggest that LT varieties should be avoided, since these showed large decreases in growth and yield with decreasing planting density.

Effect of transaction characteristic factors of logistics companies on performance and long-term transaction intention (물류기업의 거래특성요인이 성과 및 장기거래의도에 미치는 영향)

  • Chung, Yeon-Joo
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The change in the management environment of the logistics industry in the era of global competition is becoming an era in which customers choose companies. Differentiation from competitors through the provision of products and services suitable for customers As customers' choices change depending on their superiority, companies are constantly striving to receive or retain customers' choices. Ultimately, this competitive structure can be seen as the importance of long-term relationship building. Therefore, in this study, we examined how factors related to transaction characteristics performed by logistics companies for customer satisfaction in the transaction relationship between cargo companies and shippers affect performance and long-term transaction intentions. First, we derived the factors of logistics service, cost, logistics infrastructure, and company competency, which are transaction characteristics factors of a logistics company that must be specifically realized for customer satisfaction in transactions between logistics companies. Second, we analyzed how the transaction characteristics factors of a logistics company affect the company's performance, and finally, how the company's performance factors affect long-term transaction intentions. As a result of empirical analysis, there were no statistically significant results on the relationship between transaction characteristics and performance of logistics companies, which can be attributed to the small size of the logistics companies that were the sample. In other words, logistics companies that do not have sufficient capacity to provide services at low prices have no choice but to engage in constant bleeding competition. It can be seen that it reflects the characteristics of the industry. On the other hand, the relationship between corporate performance factors and long-term transaction intention was found to have a positive relationship. The higher the level of partnership with logistics companies and visible financial performance is, the higher the transaction will be in the future, and the more the transaction volume will be gradually increased. And even if it costs a little more, it can be seen that the intention to continue trading is greatly expressed.

Benchmark Test Study of Localized Digital Streamer System (국산화 디지털 스트리머 시스템의 벤치마크 테스트 연구)

  • Jungkyun Shin;Jiho Ha;Gabseok Seo;Young-Jun Kim;Nyeonkeon Kang;Jounggyu Choi;Dongwoo Cho;Hanhui Lee;Seong-Pil Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.52-61
    • /
    • 2023
  • The use of ultra-high-resolution (UHR) seismic surveys to preceisly characterize coastal and shallow structures have increased recently. UHR surveys derive a spatial resolution of 3.125 m using a high-frequency source (80 Hz to 1 kHz). A digital streamer system is an essential module for acquiring high-quality UHR seismic data. Localization studies have focused on reducing purchase costs and decreasing maintenance periods. Basic performance verification and application tests of the developed streamer have been successfully carried out; however, a comparative analysis with the existing benchmark model was not conducted. In this study, we characterized data obtained by using a developed streamer and a benchmark model simultaneously. Tamhae 2 and auxiliary equipment of the Korea Institute of Geoscience and Mineral Resources were used to acquire 2D seismic data, which were analyzed from different perspectives. The data obtained using the developed streamer differed in sensitivity from that obtained using benchmark model by frequency band.However, both type of data had a very high level of similarity in the range corresponding to the central frequency band of the seismic source. However, in the low frequency band below 60 Hz, data obtained using the developed streamer showed a lower signal-to-noise ratio than that obtained using the benchmark model.This lower ratio can hinder the quality in data acquisition using low-frequency sound sources such as cluster air guns. Three causes for this difference were, and streamers developed in future will attempt to reflect on these improvements.

An Importance Analysis on the NCS-Based Skin Care Qualification L3 Level of Education in Life Care (라이프케어의 피부미용 NCS기반 자격 L3수준의 교육 중요도 연구)

  • Park, Chae-Young;Park, Jeong-Yeon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.5
    • /
    • pp.263-271
    • /
    • 2019
  • The recent phenomenon of job "Miss Match", which is inconsistent with knowledge in the demand of educational training institutes and industries, has spread to an increase in private education costs for reeducation and employment of new hires, resulting in weak individual job competency and poor employment capability, as well as economic and material waste at the national level. To compensate for these problems, the National Competency Standards(NCS), which are available immediately in practice and look for a standard point of national job competency with the aim of fostering human resources sought by industries, were developed, and even the NCS-based qualification system was launched in line with the stream of times. This study is intended to look into the importance and priority of competency units and competency unit elements at the NCS-based qualification L3 level in the skin care field for an overall check of the NCS-based qualification level at a time when educational institutes are organizing and operating the school curriculums according to the NCS and NCS-based qualification level. And it is attempted to provide basic data for the development of curriculum in fostering professional human resources required by industries. To analyze the needs for competency units and competency unit elements at the L3 level, a survey using AHP method was carried out to a group of field experts and a group of education experts. In addition, the SPSS(Statistical Package for Social Science) ver. 21.0 and Expert Choice 2000, an AHP-only solution was used to do statistical processing through the processes of data coding and data cleaning. The findings showed that there was a partial difference of opinion between a group of field experts and a group of education experts. This indicates that the inconsistencies between educational training institutes and industrial sites should be resolved at this time of change with the aim of fostering field customized human resources with professional skills. Consequently, the solution is to combine jobs at industrial sites and standardized educations of educational institutes with human resources required at industrial sites.

Comparative Analysis of the Poverty-Mitigating Effects Originated from Transfer Income Systems among Single-Elderly-Households (이전소득의 독거노인가구 빈곤경감 효과 비교)

  • Kim, Sooyoung;Lee, Kanghoon
    • 한국노년학
    • /
    • v.29 no.4
    • /
    • pp.1559-1575
    • /
    • 2009
  • As the basic old-age pension system was enforced in 2008, the base for old-age income security was founded. However, due to the basic old-age pension played a minor role as assistant allowance, it did not reach to sufficient level to cover full income security system. It is estimated that the dependency on private transfer income among the elderly who are difficult to be economically independent is still high. Therefore the poverty rate of the elderly households, who are not economically active or who are not protected by old-age income security system, is more likely to be higher than that of non-elderly households. Based on the assumption that public transfer income system should become a central means of old-age life guarantee, this study examined the poverty mitigation effects among the elderly households by comparing the private transfer income and the public transfer income. For this purpose, we selected single-elderly-households who have been considered the most vulnerable to poverty. We used 2006- 2008 Household Income and Expenditure Survey dataset that contained single-elderly who were older than 65 years old. To understand the conditions of poverty among single-elderly-households and the degree of poverty-reducing effect originated from income transfer system, we compared the poverty rates of total households and the whole elderly households. Next, we analysed the poverty of the single-elderly-households by social demographic factors such as gender, age, and economic activity. Our major findings are as follows: First, the poverty rate of the whole elderly households were not reduced, even though the basic old-age pension and long-term care management system were enforced in 2008. Second, half of the elderly households including single-elderly-households belonged to the absolute poverty line. Relatively higher level of poverty among the single-elderly-households was found especially those who were female, unemployed, low-educated, older, and rural single-elderly-households. Third, the effect of the public transfer income on mitigating the single-elderly-households poverty showed a little progress. However, even greater poverty reducing effect was found by the private transfer income system. Fourth, in a group of the public transfer systems, the public assistance such as supporting living costs contributed more to reduce poverty of the elderly population than the public pension system did.

A Study on the Development of Ultra-precision Small Angle Spindle for Curved Processing of Special Shape Pocket in the Fourth Industrial Revolution of Machine Tools (공작기계의 4차 산업혁명에서 특수한 형상 포켓 곡면가공을 위한 초정밀 소형 앵글 스핀들 개발에 관한 연구)

  • Lee Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Today, in order to improve fuel efficiency and dynamic behavior of automobiles, an era of light weight and simplification of automobile parts is being formed. In order to simplify and design and manufacture the shape of the product, various components are integrated. For example, in order to commercialize three products into one product, product processing is occurring to a very narrow area. In the case of existing parts, precision die casting or casting production is used for processing convenience, and the multi-piece method requires a lot of processes and reduces the precision and strength of the parts. It is very advantageous to manufacture integrally to simplify the processing air and secure the strength of the parts, but if a deep and narrow pocket part needs to be processed, it cannot be processed with the equipment's own spindle. To solve a problem, research on cutting processing is being actively conducted, and multi-axis composite processing technology not only solves this problem. It has many advantages, such as being able to cut into composite shapes that have been difficult to flexibly cut through various processes with one machine tool so far. However, the reality is that expensive equipment increases manufacturing costs and lacks engineers who can operate the machine. In the five-axis cutting processing machine, when producing products with deep and narrow sections, the cycle time increases in product production due to the indirectness of tools, and many problems occur in processing. Therefore, dedicated machine tools and multi-axis composite machines should be used. Alternatively, an angle spindle may be used as a special tool capable of multi-axis composite machining of five or more axes in a three-axis machining center. Various and continuous studies are needed in areas such as processing vibration absorption, low heat generation and operational stability, excellent dimensional stability, and strength securing by using the angle spindle.

Analysis and Forecast of Venture Capital Investment on Generative AI Startups: Focusing on the U.S. and South Korea (생성 AI 스타트업에 대한 벤처투자 분석과 예측: 미국과 한국을 중심으로)

  • Lee, Seungah;Jung, Taehyun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.21-35
    • /
    • 2023
  • Expectations surrounding generative AI technology and its profound ramifications are sweeping across various industrial domains. Given the anticipated pivotal role of the startup ecosystem in the utilization and advancement of generative AI technology, it is imperative to cultivate a deeper comprehension of the present state and distinctive attributes characterizing venture capital (VC) investments within this domain. The current investigation delves into South Korea's landscape of VC investment deals and prognosticates the projected VC investments by juxtaposing these against the United States, the frontrunner in the generative AI industry and its associated ecosystem. For analytical purposes, a compilation of 286 investment deals originating from 117 U.S. generative AI startups spanning the period from 2008 to 2023, as well as 144 investment deals from 42 South Korean generative AI startups covering the years 2011 to 2023, was amassed to construct new datasets. The outcomes of this endeavor reveal an upward trajectory in the count of VC investment deals within both the U.S. and South Korea during recent years. Predominantly, these deals have been concentrated within the early-stage investment realm. Noteworthy disparities between the two nations have also come to light. Specifically, in the U.S., in contrast to South Korea, the quantum of recent VC deals has escalated, marking an augmentation ranging from 285% to 488% in the corresponding developmental stage. While the interval between disparate investment stages demonstrated a slight elongation in South Korea relative to the U.S., this discrepancy did not achieve statistical significance. Furthermore, the proportion of VC investments channeled into generative AI enterprises, relative to the aggregate number of deals, exhibited a higher quotient in South Korea compared to the U.S. Upon a comprehensive sectoral breakdown of generative AI, it was discerned that within the U.S., 59.2% of total deals were concentrated in the text and model sectors, whereas in South Korea, 61.9% of deals centered around the video, image, and chat sectors. Through forecasting, the anticipated VC investments in South Korea from 2023 to 2029 were derived via four distinct models, culminating in an estimated average requirement of 3.4 trillion Korean won (ranging from at least 2.408 trillion won to a maximum of 5.919 trillion won). This research bears pragmatic significance as it methodically dissects VC investments within the generative AI domain across both the U.S. and South Korea, culminating in the presentation of an estimated VC investment projection for the latter. Furthermore, its academic significance lies in laying the groundwork for prospective scholarly inquiries by dissecting the current landscape of generative AI VC investments, a sphere that has hitherto remained void of rigorous academic investigation supported by empirical data. Additionally, the study introduces two innovative methodologies for the prediction of VC investment sums. Upon broader integration, application, and refinement of these methodologies within diverse academic explorations, they stand poised to enhance the prognosticative capacity pertaining to VC investment costs.

  • PDF

Study on water quality prediction in water treatment plants using AI techniques (AI 기법을 활용한 정수장 수질예측에 관한 연구)

  • Lee, Seungmin;Kang, Yujin;Song, Jinwoo;Kim, Juhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.151-164
    • /
    • 2024
  • In water treatment plants supplying potable water, the management of chlorine concentration in water treatment processes involving pre-chlorination or intermediate chlorination requires process control. To address this, research has been conducted on water quality prediction techniques utilizing AI technology. This study developed an AI-based predictive model for automating the process control of chlorine disinfection, targeting the prediction of residual chlorine concentration downstream of sedimentation basins in water treatment processes. The AI-based model, which learns from past water quality observation data to predict future water quality, offers a simpler and more efficient approach compared to complex physicochemical and biological water quality models. The model was tested by predicting the residual chlorine concentration downstream of the sedimentation basins at Plant, using multiple regression models and AI-based models like Random Forest and LSTM, and the results were compared. For optimal prediction of residual chlorine concentration, the input-output structure of the AI model included the residual chlorine concentration upstream of the sedimentation basin, turbidity, pH, water temperature, electrical conductivity, inflow of raw water, alkalinity, NH3, etc. as independent variables, and the desired residual chlorine concentration of the effluent from the sedimentation basin as the dependent variable. The independent variables were selected from observable data at the water treatment plant, which are influential on the residual chlorine concentration downstream of the sedimentation basin. The analysis showed that, for Plant, the model based on Random Forest had the lowest error compared to multiple regression models, neural network models, model trees, and other Random Forest models. The optimal predicted residual chlorine concentration downstream of the sedimentation basin presented in this study is expected to enable real-time control of chlorine dosing in previous treatment stages, thereby enhancing water treatment efficiency and reducing chemical costs.

Comparative Analysis of COVID-19 Pandemic Crisis Response Capacities by Countries (코로나19 팬데믹 위기 대응 역량의 국가별 비교분석)

  • Yoon Hyeon Lee
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.25 no.2
    • /
    • pp.59-70
    • /
    • 2024
  • Objectives: The purpose of this study is to analyze each country's infectious disease response capacities and, based on this, find areas for improvement in Korea's infectious disease management response. Methods: First, the capacity to respond to the COVID-19 infectious disease was analyzed by country using the SPAR scores of 96 countries around the world released by WHO in 2022. Second, we analyzed each country's specific COVID-19 quarantine performance using Our World in Data and the Global Health Security Index (GHSI). Results: First, the quarantine intensity index on January 24, 2021 was the highest in the Southeast Asia branch at 67.6, which had strong quarantine measures, and the lowest at 44.5 in the Africa branch. As of December 31, 2022, the quarantine intensity index in Europe was significantly lowered to 11.6. Second, the factor that influenced the SPAR indicator on the total number of patients per million population was national laboratory (C4), p=.027, and the factor that influenced the total number of deaths per million population was infection prevention and control (C9), p=.005., Risk Communication and Community Participation (C10) p=.040. The influential factor on GDP per capita was infection prevention and control (C9) p=.009, and the influential factor on GHSI was infection prevention and control (C9) p=.002. Conclusion: The research findings indicate that it was difficult to find a correlation between the SPAR, which is each country's self-assessment of their infectious disease capacities, and the number of COVID-19 cases or the intensity of pandemic responses. However, mortality rates, as well as factors such as the Global Health Security Index (GHSI) and national income, appear to be somewhat influenced. For future improvements in infectious disease management and response in our country, it is necessary to develop pandemic strategies that can reduce socio-economic costs based on more scientific and reliable data like JEE or GHSI, especially in preparation for potential unknown emerging infectious diseases. Based on this, proactive decision-making led by a control tower of experts and effective health communication are also required to respond to public health crises at a national level.