• Title/Summary/Keyword: Cost-utility analysis

Search Result 198, Processing Time 0.027 seconds

Health Economics Evaluation of a Gastric Cancer Early Detection and Treatment Program in China

  • Li, Dan;Yuan, Yuan;Sun, Li-Ping;Fang, Xue;Zhou, Bao-Sen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5133-5136
    • /
    • 2014
  • Objective: To use health economics methodology to assess the screening program on gastric cancer in Zhuanghe, China, so as to provide the basis for health decision on expanding the program of early detection and treatment. Materials and Methods: The expense of an early detection and treatment program for gastric cancer in patients found by screening, and also costs of traditional treatment in a hospital of Zhuanghe were assessed. Three major techniques of medical economics, namely cost-effective analysis (CEA), cost-benefit analysis (CBA) and cost-utility analysis (CUA), were used to assess the screening program. Results: Results from CEA showed that investing every 25, 235 Yuan on screening program in Zhuanghe area, one gastric cancer patient could be saved. Data from CUA showed that it was cost 1, 370 Yuan per QALY saved. Results from CBA showed that: the total cost was 1,945,206 Yuan with a benefit as 8,669,709 Yuan and an CBR of 4.46. Conclusions: The early detection and treatment program of gastric cancer appears economic and society-beneficial. We suggest that it should be carry out in more high risk areas for gastric cancer.

Hybrid Cascaded MLI topology using Ternary Voltage Progression Technique with Multicarrier Strategy

  • Venugopal, Jamuna;Subarnan, Gayathri Monicka
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1610-1620
    • /
    • 2015
  • A major problem in conventional multilevel inverter is that an increase in power semiconductor switches causes an increase in cost and switching losses of the inverter. The multicarrier strategy adopted for the multilevel inverters has become more popular due to reduced cost, lower harmonic distortion, and higher voltage capability than the conventional switching strategy applied to inverters. Various topologies and modulation strategies have been reported for utility and drive applications. Level shifted based pulse width modulation techniques are proposed to investigate the performance of the multilevel inverter. The proposed work focuses on reducing the utilized switches so that the cost and the switching losses of the inverter do not go up and the consistent efficiency could be achieved. This paper presents the detailed analysis of these topologies. The analysis is based on the number of switches, DC sources, output level, maximum voltage, and the efficiency. As an illustration, single phase cascaded multilevel inverter topologies are simulated using MATLAB/SIMULINK and the experimental results demonstrate the viability of these inverters.

Economic Analysis of Power Plant Utilities Under $CO_2$ Emission Tax (탄소세(炭素稅)를 고려한 화력발전 설비간의 경제성 평가)

  • Kim, Ji-Soo;Lee, Byoung-Nam;Kim, Tae-Jin
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.237-248
    • /
    • 1997
  • The purpose of this study is to make an economic analysis of power plant utilities by examining electricity generating costs with environmental consideration. Economic growth has caused pollutant emission, and subsequent environmental pollution has been identified as a very real limit to sustainable development. Considering the enormous role of electricity in the national economy, it is thus very important to study the effect of environmental regulations on the electricity sector. Because power utilities need large investments during construction, operation and maintenance, and also require much construction lead time. Economic analysis is the very important process in the electric system expansion planning. In this study, the levelized generation cost method is used in comparing economic analysis of power plant utilities. Among the pollutants discharged of the electricity sector, this study principally deals with the control activities related only to $CO_2$, and $NO_2$, since the control cost of $SO_2$, and TSP (Total Suspended Particulates) is already included in the construction cost of utilities. The cost of electricity generation in a coal-fired power plant is compared with one in an LNG combined cycle power plant. Moreover this study surveys the sensitivity of fuel price, interest rate and carbon tax. In each case, this sensitivity can help to decide which utility is economically justified in the circumstance of environmental regulations.

  • PDF

A study on the feasibility assessment model of urban utility tunnel by analytic hierarchy process (계층의사분석 기법을 적용한 도심지 공동구 타당성 평가모델 연구)

  • Chung, Jee-Seung;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.131-144
    • /
    • 2018
  • The urban center of a large city has a high concentration ratio of population, commerce, and traffic. Therefore, the expected effect is high from the introduction of the urban utility tunnel and it also has sufficient economic feasibility considering life cycle cost. Moreover, the construction cost can be greatly reduced if it is included in a large underground development such as a subway or a complex transfer center construction. However, it is not reflected in actual underground development plan. When planning a urban utility tunnel in Korea, it is expected to have difficulties such as the cost of relocation of the existing Life-Line, conflicts among the individual facility institutions, procurement of construction resources and sharing. Furthermore, it is possible to promote the project only if a consensus is drawn up by a collective council composed of all facilities and project developers. Therefore, an optimal alternative should be proposed using economic analysis and feasibility assessment system. In this study, the analytic hierarchy process (AHP) is performed considering the characteristics of urban areas and the importance of each indicator is quantified. As a result, we can support reasonable design capacity optimization using the feasibility assessment system.

Low Cost High Power Density Photovoltaic Power Conditioning System with an Energy Storage System

  • Jang, Du-Hee;Han, Sang-Kyoo
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.487-494
    • /
    • 2012
  • A new low cost high power density photovoltaic power conditioning system (PV PCS) with an energy storage system is proposed in this paper. Its high power density and cost effectiveness can be achieved through the unification of the maximum power point tracker and the battery charger/discharger. Despite the reduced power stage, the proposed system can achieve the same performance in terms of maximum power point tracking and battery charging/discharging as the conventional system. When a utility power failure happens, the proposed system cannot perform maximum power point tracking at the UPS mode. However, the predetermined battery voltage near the maximum power point of the PV array can effectively generate a reasonable PV power even at the UPS mode. Therefore, it features a simpler structure, less mass, lower cost, and fewer devices. Finally, to confirm the operation, validity, and features of the proposed system, a theoretical analysis and experimental results from a single phase AC 220Vrms/1.5kW prototype are presented.

An Investigation of the Relationship between Revenue Water Ratio and the Operating and Maintenance Cost of Water Supply Network (상수관망 유수율과 유지관리 비용의 관계 분석)

  • Kim, Jaehee;Yoo, Kwangtae;Jun, Hwandon;Jang, Jaesun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.202-212
    • /
    • 2012
  • Due to the deterioration of water supply network and the deficiency of raw water, the water utility of local governments have performed various projects to improve their revenue water ratio. However, it is very difficult to estimate the cost for maintaining the revenue water ratio at higher level after completing the project, because local governments have different conditions affecting the operating and maintenance cost of water supply network. The purpose of this study is to present a procedure to estimate the operating and maintenance cost required to maintain the target revenue water ratio of the water supply network. For this purpose, we estimated the cost used only for operation and maintenance of water supply network of 164 local governments with the aid of K-Mean Clustering Analysis and the data from 40 representative local governments. Then, the regression analysis was performed to find relationship between revenue water ratio and the operating and maintenance cost with two different data sets generated by two classification methods; the first method classifies the local governments by means of k-means clustering, and the other classifies the local governments according to the index standardized by the operating and maintenance cost per unit length of water mains per revenue water ratio. The results shows that the method based on the index standardized by the cost and revenue water ratio of each government produces more reliable results for finding regression equations between revenue water ratio and the operating and maintenance cost only for water supply network. The estimated regression equations for each group can be used to estimate the cost required to keep the target revenue water ratio of the local government.

Economic Analysis on PV/Diesel Power System for Remote Islands' Electrification (도서용 태양광/내연기관 발전시스템 경제성 비교 분석)

  • Lee, M.G.;Jeong, M.W.;Jin, Y.T.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.147-151
    • /
    • 1998
  • Several PV-diesel hybrid systems were built in isolated islands in Korea, where they are far from the inland to be supplied the electric power to a utility level from it. A lot of efforts has been concentrated to find a cost-effective electric supply system with higher reliability and minimum maintenance when compared with a diesel generator. For this purpose, an autonomous PV-diesel hybrid system with multi-channel remote monitoring system was investigated to supply electric power under minimum operating cost and maintenance in a small isolated island. In this report, the economic analysis was performed for comparison with photovoltaic system and diesel generator by computer simulation. And it was proven that a PV system is more cost-effective than an internal combustion engine for the remote island with less than 150 households. Especially, in the case of islands with less than 50 households, the initial construction cost of the PV system is comparable to and its operating cost is about 70% less than the diesel generator.

  • PDF

Energy and Economic Analysis of Heat Recovery Cogeneration Loop Integrated with Heat Pump System by Detailed Building Energy Simulation (건물 에너지 상세 해석을 통한 소형 열병합 발전 및 히트펌프 복합 시스템의 경제성 분석)

  • Seo, Dong-Hyun;Koh, Jae-Yoon;Park, Yool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • Up until recently, the energy and the economic analysis of a cogeneration system have been implemented by a manual calculation that is based on monthly thermal loads of buildings. In this study, a cogeneration system modeling validation with a detail building energy simulation, eQUEST, for a building energy and cost prediction has been implemented. By analyzing the hourly building electricity and thermal loads, it enables users to decide proper cogeneration system capacity and to estimate more accurate building energy consumption. eQUEST also verified the energy analysis when the heat pump system is integrated with the cogeneration system. The mechanical system configuration benefits from the high efficiency heat pump system while avoiding the building electricity demand increase. Economic analysis such as LCC (Life Cycle Cost) method is carried out to verify economical benefits of the system by applying actual utility rates of KEPCO(Korea Electricity Power COmpany) and KOGAS(KOrea GAS company).

A Simple Seismic Vulnerability Sorting Method for Electric Power Utility Tunnels (전력구의 간편 지진취약도 선별법)

  • Kang, Choonghyun;Huh, Jungwon;Park, Inn-Joon;Hwang, Kyeong Min;Jang, Jung Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.110-118
    • /
    • 2018
  • Due to recent earthquakes, there is a growing awareness that Korea is not a safe zone for earthquakes any more. Therefore, the review of various aspects of the seismic safety of the infrastructures are being carried out. Because of the characteristics of the underground structure buried in the ground, the electric power utility tunnels must be considered not only for the inertia and load capacity of the structure itself but also the characteristics of the surrounding soils. An extensive and accurate numerical analysis is inevitably required in order to consider the interaction with the ground, but it is difficult to apply the soil-structure interaction analyses, which generally requires high cost and extensive time, to all electric power utility tunnel structures. In this study, the major design variables including soil characteristics are considered as independent variables, and the seismic safety factor, which is the result of the numerical analysis, is considered as a dependent variable. Thus, a method is proposed to select vulnerable electric power utility tunnels with low seismic safety factor while excluding costly and time-consuming numerical analyses through the direct correlation analysis between independent and dependent variables. Equations of boundary limits were derived based on the distribution of the seismic safety factor and the cover depth and rebar amounts with high correlation relationship. Consequently, a very efficient and simple approach is proposed to select vulnerable electric power utility tunnels without intensive numerical analyses. Among the 108 electric power utility tunnels that were investigated in this paper, 30% were screened as fragile structures, and it is confirmed that the screening method is valid by checking the safety factors of the fragile structure. The approach is relatively very simple to use and easy to expand, and can be conveniently applied to additional data to be obtained in the future.

An Economic Analysis on Dual-fuel Engine Generation for Peak Load (피크부하용 혼소엔진발전의 경제성 분석)

  • Lee, Ok-Bae;Ahn, Jae-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1260-1268
    • /
    • 2012
  • Recently, lack of power reserve margin was observed quite often. In this paper, we studied the method to secure power source for a short time, to cut the utility power peak load, and to reduce the users electricity bills. Emergency diesel generator of an office building is to be converted into a dual-fuel engine generator which is responsible for a portion of the peak load. Compared to the conventional diesel fuel generator, the proposed dual-fuel engine is able to reduce the generation power cost by dual-fuel combustion, and it also mitigates the building's utility power peak load by charging the building's peak load. If the dead resources (a group of emergency dual-fuel engine generators), as a Virtual Power Plant, are operating in peak time, we can significantly reduce future large power development costs. We investigated the current general purpose electricity bills as well as the records of the building electric power usage, and calculated diesel engine generator renovation costs, generation fuel costs, driving conditions, and savings in electricity bills. The proposed dual-fuel engine generation method reduces 18.1% of utility power peak load, and turned out to be highly attractive investment alternative which shows more than 27% of IRR, 76 million won of NPV, and 20~53 months of payback periods. The results of this study are expected to be useful to developing the policy & strategy of the energy department.