• 제목/요약/키워드: Cost optimization design

검색결과 978건 처리시간 0.037초

Cost optimization of reinforced high strength concrete T-sections in flexure

  • Tiliouine, B.;Fedghouche, F.
    • Structural Engineering and Mechanics
    • /
    • 제49권1호
    • /
    • pp.65-80
    • /
    • 2014
  • This paper reports on the development of a minimum cost design model and its application for obtaining economic designs for reinforced High Strength Concrete (HSC) T-sections in bending under ultimate limit state conditions. Cost objective functions, behavior constraint including material nonlinearities of steel and HSC, conditions on strain compatibility in steel and concrete and geometric design variable constraints are derived and implemented within the Conjugate Gradient optimization algorithm. Particular attention is paid to problem formulation, solution behavior and economic considerations. A typical example problem is considered to illustrate the applicability of the minimum cost design model and solution methodology. Results are confronted to design solutions derived from conventional design office methods to evaluate the performance of the cost model and its sensitivity to a wide range of unit cost ratios of construction materials and various classes of HSC described in Eurocode2. It is shown, among others that optimal solutions achieved using the present approach can lead to substantial savings in the amount of construction materials to be used. In addition, the proposed approach is practically simple, reliable and computationally effective compared to standard design procedures used in current engineering practice.

Mooring Cost Sensitivity Study Based on Cost-Optimum Mooring Design

  • Ryu, Sam Sangsoo;Heyl, Caspar;Duggal, Arun
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.1-6
    • /
    • 2009
  • The paper describes results of a sensitivity study on an optimum mooring cost as a function of safety factor and allowable maximum offset of the offshore floating structure by finding the anchor leg component size and the declination angle. A harmony search (HS) based mooring optimization program was developed to conduct the study. This mooring optimization model was integrated with a frequency-domain global motion analysis program to assess both cost and design constraints of the mooring system. To find a trend of anchor leg system cost for the proposed sensitivity study, optimum costs after a certain number of improvisation were found and compared. For a case study a turret-moored FPSO with 3 ${\times}$ 3 anchor leg system was considered. To better guide search for the optimum cost, three different penalty functions were applied. The results show that the presented HS-based cost-optimum offshore mooring design tool can be used to find optimum mooring design values such as declination angle and horizontal end point separation as well as a cost-optimum mooring system in case either the allowable maximum offset or factor of safety varies.

Life-cycle-cost optimization for the wind load design of tall buildings equipped with TMDs

  • Venanzi, Ilaria;Ierimonti, Laura;Caracoglia, Luca
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.379-392
    • /
    • 2020
  • The paper presents a Life-Cycle Cost-based optimization framework for wind-excited tall buildings equipped with Tuned Mass Dampers (TMDs). The objective is to minimize the Life-Cycle Cost that comprises initial costs of the structure, the control system and costs related to repair, maintenance and downtime over the building's lifetime. The integrated optimization of structural sections and mass ratio of the TMDs is carried out, leading to a set of Pareto optimal solutions. The main advantage of the proposed methodology is that, differently from the traditional optimal design approach, it allows to perform the unified design of both the structure and the control system in a Life Cycle Cost Analysis framework. The procedure quantifies wind-induced losses, related to structural and nonstructural damage, considering the stochastic nature of the loads (wind velocity and direction), the specificity of the structural modeling (e.g., non-shear-type vibration modes and torsional effects) and the presence of the TMDs. Both serviceability and ultimate limit states related to the structure and the TMDs' damage are adopted for the computation of repair costs. The application to a case study tall building allows to demonstrate the efficiency of the procedure for the integrated design of the structure and the control system.

Optimum design of axially symmetric cylindrical reinforced concrete walls

  • Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.361-375
    • /
    • 2014
  • The main aim of this paper is to investigate the relationship between thickness and height of the axially symmetric cylindrical reinforced concrete (RC) walls by the help of a meta-heuristic optimization procedure. The material cost of the wall which includes concrete, reinforcement and formwork, was chosen as objective function of the optimization problem. The wall thickness, compressive strength of concrete and diameter of reinforcement bars were defined as design variables and tank volume, radius and height of the wall, loading condition and unit cost of material were defined as design constants. Numerical analyses of the wall were conducted by using superposition method (SPM) considering ACI 318-Building code requirements for structural concrete. The optimum wall thickness-height relationship was investigated under three main cases related with compressive strength of concrete and density of the stored liquid. According to the results, the proposed method is effective on finding the optimum design with minimum cost.

Design optimization of reinforced concrete structures

  • Guerra, Andres;Kiousis, Panos D.
    • Computers and Concrete
    • /
    • 제3권5호
    • /
    • pp.313-334
    • /
    • 2006
  • A novel formulation aiming to achieve optimal design of reinforced concrete (RC) structures is presented here. Optimal sizing and reinforcing for beam and column members in multi-bay and multistory RC structures incorporates optimal stiffness correlation among all structural members and results in cost savings over typical-practice design solutions. A Nonlinear Programming algorithm searches for a minimum cost solution that satisfies ACI 2005 code requirements for axial and flexural loads. Material and labor costs for forming and placing concrete and steel are incorporated as a function of member size using RS Means 2005 cost data. Successful implementation demonstrates the abilities and performance of MATLAB's (The Mathworks, Inc.) Sequential Quadratic Programming algorithm for the design optimization of RC structures. A number of examples are presented that demonstrate the ability of this formulation to achieve optimal designs.

도로의 최적노선대 선정방법 비교 연구 (Comparative Study on Determining Highway Routes)

  • 김관중;장명순
    • 한국도로학회논문집
    • /
    • 제8권4호
    • /
    • pp.159-179
    • /
    • 2006
  • 도로의 구조 시설기준에 관한 규칙과 국도의 노선계획 설계지침에 준하여 실행되는 현행 노선선정방법과, 컴퓨터 발전과 함께 국내외에서 연구되고 있는 선형최적화 모형식으로 사례연구 구간의 도로 노선을 선정하여 노선 특성을 비교 분석해본 결과, 현행 노선선정방법은 단계별, 구간별로 순차적인 노선선정이 이루어지는 국지적 최적을 추구하나, 선형 최적화 모형식 선정방법은 모든 설계요소가 동시에 고려된 체계최적(System Optimal)의 노선탐색 능력이 있는 것으로 분석되었다. 또한 선형최적화 모형에서 기존 설계공종별 실제공사비로 비용함수를 보정하여 노선을 선정한 결과 현실에 부합되게 설계되었으며, 경제성이 높은(B/C=1.66) 대안 노선이 탐색되었다. 선형최적화 설계모형은 터널 종단에서 종단 경사가 변화하는 등 보완될 점이 있음에도 타당성조사와 기본설계단계에서 노선선정 도구로서 설계시간 및 비용단축, 다양한 대안 노선의 검토 등의 많은 장점을 지니고 있음이 확인되었다.

  • PDF

교량/궤도 종방향 해석 및 교량/차량 동적영향을 고려한 고속철도 강교량의 신뢰성 최적설계 (Reliability-Based Optimum Design of High-Speed Railway Steel Bridges Considering Bridge/Rail Longitudinal Analysis and Bridge/Vehicle Dynamic Effect)

  • 이종순;임영록
    • 한국철도학회논문집
    • /
    • 제12권6호
    • /
    • pp.974-982
    • /
    • 2009
  • 본 연구는 교량/궤도 종방향 해석 및 교량/차량 동적영향을 고려한 설계기법에 대한 효율성 및 경제성을 증명하기 위하여 수행하였다. 신뢰성에 기초한 생애주기비용 최적설계는 기존 설계기법에 의한 설계, 초기비용에 기초한 최적설계, 등가 생애주기비용 최적설계에 의한 최적설계와 비교하기 위하여 5$\times$(1@50m) 경간 소수주형 교량을 대상으로 적용하였다. 신뢰성에 기초한 최적설계 결과 교량/궤도 종방향 해석 및 교량/차량 동적영향을 고려한 고속철도 교량 설계 단면이 교량/궤도 종방향 해석 및 교량/차량 동적영향을 고려하지 않은 설계 단면보다 훨씬 효율적임을 확인 하였다.

매개변수 종속 최적화에서 최대치형 목적함수 처리에 관한 연구 (A study on the treatment of a max-value cost function in parametric optimization)

  • 김민수;최동훈
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1561-1570
    • /
    • 1997
  • This study explores the treatment of the max-value cost function over a parameter interval in parametric optimization. To avoid the computational burden of the transformation treatment using an artificial variable, a direct treatment of the original max-value cost function is proposed. It is theoretically shown that the transformation treatment results in demanding an additional equality constraint of dual variables as a part of the Kuhn-Tucker necessary conditions. Also, it is demonstrated that the usability and feasibility conditions on the search direction of the transformation treatment retard convergence rate. To investigate numerical performances of both treatments, typical optimization algorithms in ADS are employed to solve a min-max steady-state response optimization. All the algorithm tested reveal that the suggested direct treatment is more efficient and stable than the transformation treatment. Also, the better performing of the direct treatment over the transformation treatment is clearly shown by constrasting the convergence paths in the design space of the sample problem. Six min-max transient response optimization problems are also solved by using both treatments, and the comparisons of the results confirm that the performances of the direct treatment is better than those of the tranformation treatment.

Multi-objective Optimum Structural Design of Marine Structure Considering the Productivity

  • Lee, Joo-Sung;Han, Jeong-Hoon
    • 한국해양공학회지
    • /
    • 제23권3호
    • /
    • pp.1-5
    • /
    • 2009
  • It is necessary to develop an efficient optimization technique to optimize engineering structures that have given design spaces, discrete design values, and several design goals. In this study, an optimum algorithm based on the genetic algorithm was applied to the multi-object problem to obtain an optimum solution that simultaneously minimizes the structural weight and construction cost of panel blocks in ship structures. The cost model was used in this study, which includes the cost of adjusting the weld-induced deformation and applying the deformation control methods, in addition to the cost of the material and the welding cost usually included in the normal cost model. By using the proposed cost model, more realistic optimum design results can be expected.

LRFD에 의한 강상판형교의 시스템 최적설계 (System Optimization of Orthotropic Steel-Deck Bridges by Load and Resistance Factor Design)

  • 조효남;민대홍;김현우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.262-271
    • /
    • 1998
  • Recent, more and more steel deck bridges are adopted for the design of long span bridges and the upgrading of existing concrete deck bridges, mainly because of reduced self weight, higher stiffness and efficient erection compared to concrete decks. The main objective of this study is to propose on formulation of the design optimizations to develop an optimal desist program required for optimum desist for orthotropic steel-deck bridges. The objective function of the optimization is formulated as a minimum initial cost design problem. The behavior and design constraints are formulated based on the ASD and LRFD criteria of the Korean Bridge Design Code(1996). The optimum design program developed in this study consists of two steps. In the first step the system optimization of the steel box girder bridges is carried out. And in the second step the program provided the optimum design of the orthotropic steel-deck with close ribs. In the optimal design program the analysis module for the deck optimization is based on the Pelican Esslinger method. The optimizer module of the program utilizes the ADS(Automated Desist Synthesis) routines using the optimization techniques fuor constrained optimization. From the results of real application examples, The cost effectiveness of optimum orthotropic steel-deck bridges designs based on both ASD and LRFD methods is investigated by comparing the results with those of conventional designs, and it may be concluded that the design developed in this study seems efficient and robust for the optimization of orthotropic steel-deck bridges

  • PDF