• Title/Summary/Keyword: Cost Scaling Factor

Search Result 16, Processing Time 0.023 seconds

A Performance Variation by Scaling Factor in NM-MMA Adaptive Equalization Algorithm (NM-MMA 적응 등화 알고리즘에서 Scaling Factor에 의한 성능 변화)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.105-110
    • /
    • 2018
  • This paper compare the adaptive equalization performance of NM-MMA (Novel Mixed-MMA) algorithm which using the mixed const function by scaling factor values. The mixed cost function of NM-MMA composed of the appropriate weighted addition of gradient vector in the MMA and SE-MMA cost function, and updating the tap coefficient based on these function, it is possible to improve the convergence speed and MSE value of current algorithm. The computer simulation was performed in the same channel, step size, SNR environment by changing the scaling factor, and its performance were compared appling the equalizer output constellation, residual isi, MD, MSE, SER. As a result of computer simulation, the residual values of performance index were reduced in case of the scaling factor of MMA cost function was greater than the scaling factor of SE-MMA. and the convergence speed was improved in case of the scaling factor of SE-MMA was greater than the MMA.

Cost Scaling Factor according to Power Plant Capacity Change (발전소 용량변경에 따른 비용보정계수)

  • Ha, Gak-Hyeon;Kim, Sung-Hwan
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.283-286
    • /
    • 2013
  • The existing nuclear power plants have been often redesigned by increasing or decreasing electrical power without changing design concept by the request of utility, economic factors or other factors. When the cost of power plant equipment redesigned by changing reactor power and electrical power is estimated, if its quotation is not available in the market place, cost scaling factor(CSF) applies to the cost of existing plant equipment and then the new-designed equipment cost can be calculated. In this paper, we review CSFs according to plant capacity change cases in United State DOE, EPRI, ABB, SWEC and introduce the results applied to Korean PWR 1000MWe and 1400MWe.

The Design of IMC-PID Controller Considering a Phase Scaling Factor (위상 조절 인자를 고려한 IMC-PID 제어기의 설계)

  • Kim, Chang-Hyun;Lim, Dong-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1618-1623
    • /
    • 2008
  • In this paper, a new design method for IMC-PID that adds a phase scaling factor of system identifications to the standard IMC-PID controller as a control parameter is proposed. Based on analytically derived frequency properties such as gain and phase margins, this tuning rule is an optimal control method determining the optimum values of controlling factors to minimize the cost function, integral error criterion of the step response in time domain, in the constraints of design parameters to guarantee qualified frequency design specifications. The proposed controller improves existing single-parameter design methods of IMC-PID in the inflexibility problem to be able to consider various design specifications. Its effectiveness is examined by a simulation example, where a comparison of the performances obtained with the proposed tuning rule and with other common tuning rules is shown.

Quantitative Comparison of Activity Calculation Methods for the Selection of Most Reliable Radionuclide Inventory Estimation

  • Hwang, Ki-Ha;Lee, Sang-Chul;Lee, Kun-Jai;Jeong, Chan-Woo;Ahn, Sang-Myeon;Kim, Tae-Wook;Kim, Kyoung-Doek;Herr, Y.H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.322-327
    • /
    • 2003
  • It is important to know the accurate radionuclide inventory of radioactive waste for the reliable management. However, estimation of radionuclide concentrations in drummed radioactive waste is difficult and unreliable because of difficulties of direct detection, high cost, and radiation exposure of sampling personnel. In order to overcome these difficulties, scaling factors (SFs) have been used to assess the activities of radionuclides that could not be directly analyzed. A radionuclide assay system has been operated at KORI site since 1996 and consolidated scaling factor method has played a dominant role in determination of radionuclides concentrations. However, some problems are still remained such as uncertainty of estimated scaling factor values, inaccuracy of analyzed sample values, and disparity between the actual and ideal correlation pairs and the others. Therefore, it needs to improve the accuracy of scaling factor values. The scope of this paper is focused on the improvement of accuracy and representativeness of calculated scaling factor values based on statistical techniques. For the selection of reliable activity determination method, the accuracy of estimated SF values for each activity determination method is compared. From the comparison of each activity determination methods, it is recommended that SF determination method should be changed from the arithmetic mean to the geometrical mean for more reliable estimation of radionuclide activity. Arithmetic mean method and geometric mean method are compared based on the data set in KORI system.

  • PDF

Design of Fuzzy Controller with The Automatic Adjustment of Scaling Factors (스케일 계수 자동 조정 퍼지제어기 설계)

  • 이상윤;한성현;신위재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.486-490
    • /
    • 2002
  • When the fuzzy controller apply to a real plant, We have not excepted result of a satisfactory control by modeling error and lacking information about an plant. In this case, we have to adjust the scale factors for improvement of the control performance and this method need a lot of time and cost for perform a trial and error. In this paper, we proposed the fuzzy controller with the automatic adjustment of scaling factors. It was improve upon the control performance using a adequate scale factor by fuzzy logic and normalizer. As the results of simulation through the second order plant, we confirmed that the proposed the fuzzy controller within the function of automatic scale get a good response compare with the fuzzy controller within the fixed scale factor.

  • PDF

Design and Implementation of Fuzzy Regulator with The Automatic Adjustment of Scaling factor (스케일링 계수를 자동조정하는 퍼지 제어기 설계 및 구현)

  • 이상윤;한성현;신위재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.80-84
    • /
    • 2001
  • When the fuzzy controller apply to a real plant, We have not excepted result of a satisfactory control by modeling error and lacking information about an plant. In this case, we have to adjust the control factors for improvement of the control performance and this method need a lot of time and cost for perform a trial and error. In this paper, we proposed the fuzzy regulator with the automatic adjustment of scaling factors. It was improve upon the control performance using a adequate scale factor by fuzzy inference. We implemented the controller using the DSP processor and applied in a hydraulic servo system. And then we observed an experimental results.

  • PDF

New Optimal Tuning Method of IMC-PID for SI/SO Systems (단일 입출력 시스템에 대한 IMC-PID의 새로운 최적 동조법)

  • Kim, Chang-Hyun;Lim, Dong-Kyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.213-217
    • /
    • 2008
  • In this paper, a new design method for IMC-PID that adds a phase scaling factor of system identifications to the standard IMC-PID controller as a control parameter is proposed. Based on analytically derived frequency properties such as gain, phase margin and maximum magnitude of sensitivity function, this tuning rule is an optimal control method determining the optimum values of controlling factors to minimize the cost function, integral error criterion of the step response in time domain, in the constraints of design parameters to guarantee qualified frequency design specifications. The proposed controller improves existing single-parameter design methods of IMC-PID in the inflexibility problem to be able to consider various design specifications. Its effectiveness is examined by a simulation example, where a comparison of the performances obtained with the proposed tuning rule and with other common tuning rules is shown.

  • PDF

Transport Efficiency Analysis of the Lines of Urban Railway using Data Envelopment Analysis (DEA를 활용한 도시철도 노선별 수송효율성 분석)

  • Kim, Soo Hyun;Jung, Hun Young;Lee, Won Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.605-616
    • /
    • 2014
  • The purpose of this study is to analyze transport efficiency of each of the 17 urban railway lines being operated by national public agencies using Data Envelopment Analysis (DEA) and to seek strategies for improving efficiency of the urban railway system. The study identified the economies of scale derived from these values of efficiency and examined the effects on cost for free ride loss and profit of transport by the fare system as the external factor. At the time, Transport profits are estimated by two production factors such as the number of vehicles and service frequency derived from multiple regression. Finally, the measures to improve the efficiency were presented in terms of profitability in the national urban railway line by applying the values of efficiency derived from DEA to multidimensional scaling (MDS).

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

Manufacturing yield challenges for wafer-to-wafer integration (Wafer-to-Wafer Integration을 위한 생산수율 챌린지에 대한 연구)

  • Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • Wafer-to-Wafer (W2W) integration technology is an emerging technology promising many benefits, such as reduced size, improved performance, reduced power, lower cost, and divergent integration. As the maturity of W2W technology progresses, new applications will become more viable. However, at present the cost for W2W integration is still very high and both manufacturing yield and reliability issues have not been resolved yet for high volume manufacturing (HVM). Especially for WTW integration resolving compound yield issue can be a key factor for HVM. To have the full benefits of WTW integration technology more than simple wafer stacking technologies are necessary. In this paper, the manufacturing yield for W2W integration is described and the challenges of WTW integration will be discussed.