• Title/Summary/Keyword: Cost Constraint

Search Result 499, Processing Time 0.029 seconds

Analysis on the factors influencing layout for production-installation work of Free-form Concrete Panels in PCM mold (PCM mold 측면에서 FCP 생산-설치 레이아웃 영향요인 분석)

  • Lim, Jeeyoung;Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.121-122
    • /
    • 2015
  • The demand on free-form buildings is gradually increasing, but there are several problems such as increased cost and construction duration, and decreased constructability at the construction phase upon construction of a building owing to the difficulty of member production-installation. To solve these problems, a technology to produce FCP using a CNC machine was developed. Basically, it delivers the information on a free-form building designed to the CNC machine, the shapes of RTM and PCM are created using the information delivered and FCP are produced with the RTM and PCM which act as forms. Since the construction duration and project cost are limited on site, the efficiency of FCP production-installation is significant for application of the technology. For it is almost impossible to change the production-installation layout and process once they are set in the construction phase, they should be carefully determined. Before the production-installation layout are established, it is necessary to analyze the factors that influence the duration. Thus, the study intends to analyze influence factors in PCM mold on estimation of the production-installation duration for FCP. According to the analysis of influence factors, a simulation model for estimation of the duration that changes depending on the constraint conditions can be built.

  • PDF

A Hybrid Parallel Genetic Algorithm for Reliability Optimal Design of a Series System (직렬시스템의 신뢰도 최적 설계를 위한 Hybrid 병렬 유전자 알고리즘 해법)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.48-55
    • /
    • 2010
  • Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.

Delay-Constrained Energy-Efficient Cluster-based Multi-Hop Routing in Wireless Sensor Networks

  • Huynh, Trong-Thua;Dinh-Duc, Anh-Vu;Tran, Cong-Hung
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.580-588
    • /
    • 2016
  • Energy efficiency is the main objective in the design of a wireless sensor network (WSN). In many applications, sensing data must be transmitted from sources to a sink in a timely manner. This paper describes an investigation of the trade-off between two objectives in WSN design: minimizing energy consumption and minimizing end-to-end delay. We first propose a new distributed clustering approach to determining the best clusterhead for each cluster by considering both energy consumption and end-to-end delay requirements. Next, we propose a new energy-cost function and a new end-to-end delay function for use in an inter-cluster routing algorithm. We present a multi-hop routing algorithm for use in disseminating sensing data from clusterheads to a sink at the minimum energy cost subject to an end-to-end delay constraint. The results of a simulation are consistent with our theoretical analysis results and show that our proposed performs much better than similar protocols in terms of energy consumption and end-to-end delay.

A Study on the Basic-Design of Inside-Sea Fishing Vessel by Economic Optimization Technique (경제성 최적화 기법에 의한 연근해 어선설계에 관한 연구)

  • 박제웅
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.287-295
    • /
    • 1995
  • fishing boat is a specialized vessel which is intended to perform certain well defined tasks. Its size, deck-layout, carrying capacity and equipment are all related to its function in carrying out its planned operations. Therefore the process of fishing boat design is inherently combined with optimization of the design variables called the economic optimization criteria. Optimization then is a process in which minimum value of weight or cost is established through evaluation of consecutive designs in which one or more design parameters are varied. This paper is to study the basic-design of Stow-net fishing vessel in the Mok-Po region. The main task is developed the preliminary design model of engineering economic system in order to use optimization techniques from operation research the design problem needs to be expressed in terms of objective function and numerous constrains like : speed, fish hold capacity, fishing range, displacement and weight, ratio of main dimensions, etc. The objective function represents the criterion which is NPV such as the ratio of revene/cost. When using computers of limited capacity like P/C, the developed basic-design model of the economic optimization procedure must be simplified to V, Cb, L/B, Dv, Db and less than 15 constraint equations. The main conclusions of this study have attempted to show that economic considerations are essential in Stow-net fishing vessel basic design and operations, and that techno-economic evaluation is an important tool for the design of Stow-net fishing vessel in 69ton and 79ton.

  • PDF

Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption

  • Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.283-290
    • /
    • 2019
  • In global competition manufacturing companies have to produce modern, new constructions from advanced materials in order to increase competitiveness. The aim of my research was to develop a new composite cellular plate structure, which can be primarily used for structural elements of road, rail, water and air transport vehicles (e.g. vehicle bodies, ship floors). The new structure is novel and innovative, because all materials of the components of the newly developed structure are composites (laminated Carbon Fiber Reinforced Plastic (CFRP) deck plates with pultruded Glass Fiber Reinforced Plastic (GFRP) stiffeners), furthermore combines the characteristics of sandwich and cellular plate structures. The material of the structure is much more advantageous than traditional steel materials, due mainly to its low density, resulting in weight savings, causing lower fuel consumption and less environmental damage. In the study the optimal construction of a given geometry of a structural element of a road truck trailer body was defined by single- and multi-objective optimization (minimal cost and weight). During the single-objective optimization the Flexible Tolerance Optimization method, while during the multi-objective optimization the Particle Swarm Optimization method were used. Seven design constraints were considered: maximum deflection of the structure, buckling of the composite plates, buckling of the stiffeners, stress in the composite plates, stress in the stiffeners, eigenfrequency of the structure, size constraint for design variables. It was confirmed that the developed structure can be used principally as structural elements of transport vehicles and unit load devices (containers) and can be applied also in building construction.

An Efficient Mixed-Integer Programming Model for Berth Allocation in Bulk Port (벌크항만의 하역 최적화를 위한 정수계획모형)

  • Tae-Sun, Yu;Yushin, Lee;Hyeongon, Park;Do-Hee, Kim;Hye-Rim, Bae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.105-114
    • /
    • 2022
  • We examine berth allocation problems in tidal bulk ports with an objective of minimizing the demurrage and dispatch associated berthing cost. In the proposed optimization model inventory (or stock) level constraints are considered so as to satisfy the service level requirements in bulk terminals. It is shown that the mathematical programming formulation of this research provides improved schedule resolution and solution accuracy. We also show that the conventional big-M method of standard resource allocation models can be exempted in tidal bulk ports, and thus the computational efficiency can be significantly improved.

Influence Factors of Typical Real Estate Development Projects (부동산 개발사업의 유형별 투자결정요인 분석)

  • Lee, Taek-Soo;Lee, Joo-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.1
    • /
    • pp.456-466
    • /
    • 2013
  • The most important thing to develop real estate asset would be a feasibility study. To secure feasibility of development projects, reducing and minimizing the cost of land and construction also would be the important thing. To analyze optimal land-value for real estate development projects, I have collected 204 balance sheets of development projects in South Korea. With the help of statistical technology, I could have selected useful data from those balance sheets. After detailed analysis of statistical data, I could have reached conclusion that the most important factor to earning rate would be land cost per unit ground area under the constraint of given sale price. So far the main pattern of feasibility study of development projects was land cost and construction cost. However, by this study, I have found a new fact that construction cost has little effect to earning rate and land cost per unit ground area is the most effect to earning rate especially in residential facilities rather than commercial ones.

SYNCHRONIZING INDIVIDUALLY OPTIMAL CYCLE TIMES ACROSS MULITI-BUYERS AND MULTI-PRODUCTS

  • Lee, Chang-Hwan
    • Management Science and Financial Engineering
    • /
    • v.4 no.2
    • /
    • pp.15-42
    • /
    • 1998
  • A joint problem of order delivery, setup reduction, and cost-sharing in a two-echelon inventory system in which a vendor supplies multiple products to a group of buyers is studied here. The basic premise is that buyers have independently implemented setup reduction programs to acquire benefits from small order sizes. Doing so, however, causes the buyers' individually optimal order cycles to be differ from that of the vendor. In conjunction with this, two models are considered. In the first model, a multi-buyers single product situation is considered in which the vendor implements a joint supply cycle policy. However, buyers, as the dominant party, insist after implementing the individually optimal setup reduction that the vendor accept their individually optimal order schedules. In the second model. a multi-products, single buyer situation is considered in which the buyer implements a joint order policy. Here, the vendor, as the dominant party, refuses to cooperate fully with the buyer's individually reduced joint order schedule, and designs his own individually optimal setup reduction mix for each product under a given budget constraint. This led to a study of an integrated Setup Reduction/Break-even Pricing Policy for each situation to eliminate mismatches in individually optimal cycle times.

  • PDF

Design Sensitivity Analysis and Topology Optimization of Heat Conduction Problems (열전도 문제에 대한 설계 민감도 해석과 위상 최적 설계)

  • 김민근;조선호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.127-134
    • /
    • 2004
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.3% of CPU time far the finite differencing. Also, the topology optimization yields physical meaningful results.

  • PDF

Optimum Design of the Spatial Structures using the TABU Algorithm (TABU 알고리즘을 이용한 대공간 구조물의 최적설계)

  • Cho Yong-Won;Lee Sang-Ju;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.273-280
    • /
    • 2005
  • The design of structural engineering optimization is to minimize the cost. This problem has many objective functions formulating section and shape as a function of the included discrete variables. simulated annealing, genetic algerian and TABU algerian are searching methods for optimum values. The object of this reserch Is comparing the result of TABU algorithm, and verifying the efficiency of TABU algorithm in structural optimization design field. For the purpose, this study used a solid truss of 25 elements having 10 nodes, and size optimization for each constraint and load condition of Geodesic ome, and shape optimization of Cable Dome for verifying spatial structures by the application of TABU algorithm.

  • PDF