• Title/Summary/Keyword: Cost Constraint

Search Result 499, Processing Time 0.031 seconds

Cost-Based Directed Scheduling : Part I, An Intra-Job Cost Propagation Algorithm (비용기반 스케쥴링 : Part I, 작업내 비용 전파알고리즘)

  • Kim, Jae-Kyeong;Suh, Min-Soo
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.4
    • /
    • pp.121-135
    • /
    • 2007
  • Constraint directed scheduling techniques, representing problem constraints explicitly and constructing schedules by constrained heuristic search, have been successfully applied to real world scheduling problems that require satisfying a wide variety of constraints. However, there has been little basic research on the representation and optimization of the objective value of a schedule in the constraint directed scheduling literature. In particular, the cost objective is very crucial for enterprise decision making to analyze the effects of alternative business plans not only from operational shop floor scheduling but also through strategic resource planning. This paper aims to explicitly represent and optimize the total cost of a schedule including the tardiness and inventory costs while satisfying non-relaxable constraints such as resource capacity and temporal constraints. Within the cost based scheduling framework, a cost propagation algorithm is presented to update cost information throughout temporal constraints within the same job.

  • PDF

Guaranteed Cost and $H_{\infty}$ Filtering for Delayed Fuzzy Dynamic Systems (시간지연 퍼지 시스템의 보장비용 및 $H_{\infty}$ 필터링)

  • 이갑래;조희수;박홍배
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.2
    • /
    • pp.10-18
    • /
    • 2003
  • This paper presents a method for designing guaranteed cost fuzzy filter with a desired H$_{\infty}$ disturbance rejection constraint of delayed fuzzy dynamic systems. This method not only guarantees an induced L$_2$ norm bound constraint on disturbance attenuation, but also minimizes an upper bound on a linear quadratic performance measure. A sufficient condition for the existence of guaranteed cost fuzzy filter with H$_{\infty}$ constraint is then presented in terms of linear matrix inequalities(LMIs). A simulation example is given to illustrate the design procedures and performances of the proposed methods.

Analysis and Evaluation for Constraint Enforcement System (제한 시스템의 분석 및 평가)

  • Hong, Min;Park, Doo-Soon;Choi, Yoo-Joo
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.57-64
    • /
    • 2009
  • Stable and effective constraint enforcement system is one of the crucial components for physically-based dynamic simulations. This paper presents analysis and evaluation for traditional constraint enforcement systems(Lagrange Multiplier method, Baumgarte stabilization method, Post-stabilization method, Implicit constraint enforcement method, Fast projection method) to provide a guideline to users who need to integrate a suitable constraint enforcement system into their dynamic simulations. The mathematical formulations for traditional constraint enforcement systems are presented in this paper. This paper describes a summary of evaluation which consists of constraint error comparison, computational cost, and dynamic behavior analysis to verify the efficiency of each traditional constraint enforcement system.

Design, Control, and Implementation of Small Quad-Rotor System Under Practical Limitation of Cost Effectiveness

  • Jeong, Seungho;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.324-335
    • /
    • 2013
  • This article presents the design, control, and implementation of a small quad-rotor system under the practical limitation of being cost effective for private use, such as in the cases of control education or hobbies involving radio-controlled systems. Several practical problems associated with implementing a small quad-rotor system had to be taken into account to satisfy this cost constraint. First, the size was reduced to attain better maneuverability. Second, the main control hardware was limited to an 8-bit processor such as an AVR to reduce cost. Third, the algorithms related to the control and sensing tasks were optimized to be within the computational capabilities of the available processor within one sampling time. A small quad-rotor system was ultimately implemented after satisfying all of the above practical limitations. Experimental studies were conducted to confirm the control performance and the operational abilities of the system.

Efficient Spatial Query Processing in Constraint Databases (제약 데이터베이스에서의 효율적인 공간질의 처리)

  • Woo, Sung-Koo;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.79-86
    • /
    • 2009
  • The tuple of constraint database consists of constraint logical formula and it could process the presentation and query of the constraint database simply. Query operation processing shall include the constraint formula between related tuple such as selection, union, intersection of spatial data through the constraint database. However, this could produce the increasing of duplicated or unnecessary data. Hence, it will drive up the cost as per quality. This paper identified problems regarding query processing result in the constraint database. Also this paper suggested the tuple minimization summary method for result relation and analyzed the effects for efficient query processing. We were able to identify that the effectiveness of the query processing was enhanced by eliminating unnecessary constraint formula of constraint relation using the tuple minimization method.

  • PDF

Development of Optimal Rehabilitation Model for Water Distribution System Based on Prediction of Pipe Deterioration (II) - Application and Analysis - (상수관로의 노후도 예측에 근거한 최적 개량 모형의 개발 (II) - 적용 및 분석 -)

  • Kim, Eung-Seok;Park, Moo-Jong;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.61-74
    • /
    • 2003
  • This study(II) apply to the A city by using the optimal rehabilitation model based on the deterioration prediction of the water distribution system proposed the study(I). The deterioration prediction model divides factors into 14 factors with digging and experiment and 9 factor without digging and experiment and calculate the deterioration degree. The application results of the deterioration prediction model show that a difference of the deterioration degree according to factor numbers is within 1~2%. Also, the model can predict the deterioration degree of each pipe without digging and experiment. The optimal rehabilitation model is divided into the optimal residual durability of each deterioration factor and budget constraint or not. The application result is as follow: the rehabilitation time and cost increase according to the increasing of the optimal residual durability. When compared the model with budget constraint and model without budget constraint, the former model increase the cost of total contents. In case of budget constraint, the increasing tendency is concluded that the pipe rehabilitation is executed in same budget every year in condition that every rehabilitation cost do not exceed the every year budget within the optimal residual durability.

Advances in Nonlinear Predictive Control: A Survey on Stability and Optimality

  • Kwon, Wook-Hyun;Han, Soo-Hee;Ahn, Choon-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Some recent advances in stability and optimality for the nonlinear receding horizon control (NRHC) or the nonlinear model predictive control (NMPC) are assessed. The NRHCs with terminal conditions are surveyed in terms of a terminal state equality constraint, a terminal cost, and a terminal constraint set. Other NRHCs without terminal conditions are surveyed in terms of a control Lyapunov function (CLF) and cost monotonicity. Additional approaches such as output feedback, fuzzy, and neural network are introduced. This paper excludes the results for linear receding horizon controls and concentrates only on the analytical results of NRHCs, not including applications of NRHCs. Stability and optimality are focused on rather than robustness.

Study on Kinematic Calibration of a Parallel-typed Machining Center Tool (병렬기구형 공작기졔의 기구학적 보정에 관한 연구)

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2237-2244
    • /
    • 2002
  • This research develops a low-cost and high accuracy kinematic calibration method based on the following principles: 1) the platform locations are accurately measured by a constrained movement to inspect a calibration target; 2) the constrained movement is chosen to guarantee the parameter observability; 3) the mechanical fixture to constrain the movement and the sensor to check the constrained movement are implemented by low-cost and high-accuracy devices; 4) the calibration is easily done at an industrial environment. The kinematic parameters calibrated with respect to a single plane aren't influenced due to the misalignment of the plane. A parameter observability is successfully obtained even through one planar constraint, which guarantees that all kinematic parameters are estimated by minimizing the cost function.

Development of Kinematic Calibration System for a Parallel-typed Machining Center Tool (병렬기구형 공작기계의 보정 시스템 개발)

  • Kim, Tae-Sung;Park, Kun-Woo;Yoon, Tae-Sung;Lee, Min-Ki
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.521-526
    • /
    • 2001
  • This research develops a low-cost and high accurate kinematic calibration method for a parallel typed machining center tool. A planar table is used for a mechanical fixture restricting the platform to place at the constrained pose and a low-cost and high accurate digital indicator is employed for a device checking if the constrained movement is satisfied within the established range. The kinematic parameters calibrated with respect to a single plane aren't influenced from the misalignment of the plane. A parameter observability is successfully obtained even through one planar constraint, which guarantees that the kinematic parameters is estimated by minimizing the cost function.

  • PDF

Optimum cost design of RC columns using artificial bee colony algorithm

  • Ozturk, Hasan Tahsin;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.643-654
    • /
    • 2013
  • Optimum cost design of columns subjected to axial force and uniaxial bending moment is presented in this paper. In the formulation of the optimum design problem, the height and width of the column, diameter and number of reinforcement bars are treated as design variables. The design constraints are implemented according to ACI 318-08 and studies in the literature. The objective function is taken as the cost of unit length of the column consisting the cost of concrete, steel, and shuttering. The solution of the design problem is obtained using the artificial bee colony algorithm which is one of the recent additions to metaheuristic techniques. The Artificial Bee Colony Algorithm is imitated the foraging behaviors of bee swarms. In application of this algorithm to the constraint problem, Deb's constraint handling method is used. Obtained results showed that the optimum value of numerical example is nearly same with the existing values in the literature.