• Title/Summary/Keyword: Cost/Reliability analysis

Search Result 808, Processing Time 0.03 seconds

A Study on Development Cost Attributes Analysis of NHPP Software Reliability Model Based on Rayleigh Distribution and Inverse Rayleigh Distribution (레일리 분포와 역-레일리 분포에 근거한 NHPP 소프트웨어 신뢰성 모형의 개발비용 속성 분석에 관한 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.554-560
    • /
    • 2019
  • In this study, after applying the finite failure NHPP Rayleigh distribution model and NHPP Inverse Rayleigh distribution model which are widely used in the field of software reliability to the software development cost model, the attributes of development cost and optimal release time were compared and analyzed. To analyze the attributes of software development cost, software failure time data was used, parametric estimation was applied to the maximum likelihood estimation method, and nonlinear equations were calculated using the bisection method. As a result, it was confirmed that Rayleigh model is relatively superior to Inverse Rayleigh model because software development cost is relatively low and software release time is also fast. Through this study, the development cost attributes of the Rayleigh model and the Inverse Rayleigh model without the existing research examples were newly analyzed. In addition, we expect that software developers will be able to use this study as a basic guideline for exploring software reliability improvement method and development cost attributes.

Reliability-based design optimization using reliability mapping functions

  • Zhao, Weitao;Shi, Xueyan;Tang, Kai
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.125-138
    • /
    • 2017
  • Reliability-based design optimization (RBDO) is a powerful tool for design optimization when considering probabilistic characteristics of design variables. However, it is often computationally intensive because of the coupling of reliability analysis and cost minimization. In this study, the concept of reliability mapping function is defined based on the relationship between the reliability index obtained by using the mean value first order reliability method and the failure probability obtained by using an improved response surface method. Double-loop involved in the classical RBDO can be converted into single-loop by using the reliability mapping function. Since the computational effort of the mean value first order reliability method is minimal, RBDO by using reliability mapping functions should be highly efficient. Engineering examples are given to demonstrate the efficiency and accuracy of the proposed method. Numerical results indicated that the proposed method has the similar accuracy as Monte Carlo simulation, and it can obviously reduce the computational effort.

A Study on the Capacity Payment in Cost Based Pool (비용기반 전력시장에서의 용량요금 산정방안에 관한 연구)

  • Han, Seok-Man;Kim, Balho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1531-1535
    • /
    • 2008
  • In the past vertically integrated power system, the power utility forecasted power demand and invested new power plants to keep a system adequacy. However, in the competitive electricity markets, a principle part of the capacity investment is market participants who decided the investment to maximize their profit. Especially, one of the main factors in their long-term decision making is the retrieval of fixed costs (construction costs). This paper presents the capacity payment in electricity power markets. The capacity payment (CP) in Cost Based Pool (CBP) is needed to recover fixed costs. However, CP in CBP was applied not only recovering fixed costs but also ensuring supply reliability. In order to operate harmonious power markets, pool needs reasonable CP mechanism. This paper analysis CP using capacity proportion and Reliability Pricing Model (RPM).

A Study On The Reliability Characteristics of Fail-Safe Control Logic (고장-안전 제어논리의 신뢰성 특성에 관한 연구)

  • 한상섭;김민수;이정석;이기서
    • Journal of Applied Reliability
    • /
    • v.1 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • This paper modelled the fail-safe control logic through the frequency coding input and designed the 3-out of-6 self checker using the error detect coding method of information redundancy. In addition, this paper also peformed the reliability parallel numeric analysis regarding single module between fail-safe. control logic module and TMR(Triple Modular Redundancy), therefore, we achieved the result that the fail-safe control logic increases a functional reliability because of decreasing system waste cost and functional overhead rather than the existing hardware redundancy method.

  • PDF

Optimal Long-term Transmission Planning Algorithm using Non-linear Branch-and-bound Method (비선형 분산안전법을 이용한 최적장기송전계률 알고리)

  • 박영문;신중린
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.5
    • /
    • pp.272-281
    • /
    • 1988
  • The problem of optimal transmission system planning is to find the most economical locations and time of transmission line construction under the various constraints such as available rights-of-way, finances, the technical characteristics of power system, and the reliability criterion of power supply, and so on. In this paper the constraint of right-of-way is represented as a finite set of available rights-of-way. And the constructed for a unit period. The electrical constraints are represented in terms of line overload and steady state stability margin. And the reliability criterion is dealt with the suppression of failure cost and with single-contingency analysis. In general, the transmission planning problem requires integer solutions and its objective function is nonlinear. In this paper the objective function is defined as a sum of the present values of construction cost and the minimum operating cost of power system. The latter is represented as a sum of generation cost and failure cost considering the change of yearly load, economic dispatch, and the line contingency. For the calculation of operating cost linear programming is adopted on the base of DC load flow calculation, and for the optimization of main objective function nonlinear Branch-and-Bound algorithm is used. Finally, for improving the efficiency of B & B algorithm a new sensitivity analysis algorithm is proposed.

A Study on the Economic Life for the Three Types of Military Wheeled Vehicles (군용 기동장비 3종(${\frac{1}{4}}$톤, $1{\frac{1}{4}}$톤, $2{\frac{1}{2}}$톤) 차량의 경제수명 산출에 관한 연구)

  • Paik, Soon-Heum;Lee, Yoon-Soo;Kim, Kyung-Yong;Na, Il-Yong;Jung, Joon-Sik;Hong, Moon-Hee
    • Journal of Applied Reliability
    • /
    • v.8 no.3
    • /
    • pp.135-144
    • /
    • 2008
  • The economic life for three types of military wheeled vehicles with load capacities of 1/4, $1{\cdot}1/4$, and $2{\cdot}1/2$ tones has been evaluated on the basis of the equivalent acquisition and operating costs. The economic life of wheeled vehicles were calculated from 12 to 18 years by using the annual equivalent cost method. The equivalent cost was decided at the lowest point of the total amount of equivalent acquisition cost and operating cost. The operating cost were collected from the field data. The evaluated economic life can be very useful for deciding the total life cycle of these three types of military vehicles. The annual equivalent cost method may be also applied to other military equipments such as communication electronics, weapon systems, and other type of vehicles.

  • PDF

Reliability Optimization of Urban Transit Brake System For Efficient Maintenance (효율적 유지보수를 위한 도시철도 전동차 브레이크의 시스템 신뢰도 최적화)

  • Bae, Chul-Ho;Kim, Hyun-Jun;Lee, Jung-Hwan;Kim, Se-Hoon;Lee, Ho-Yong;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.26-35
    • /
    • 2007
  • The vehicle of urban transit is a complex system that consists of various electric, electronic, and mechanical equipments, and the maintenance cost of this complex and large-scale system generally occupies sixty percent of the LCC (Life Cycle Cost). For reasonable establishing of maintenance strategies, safety security and cost limitation must be considered at the same time. The concept of system reliability has been introduced and optimized as the key of reasonable maintenance strategies. For optimization, three preceding studies were accomplished; standardizing a maintenance classification, constructing RBD (Reliability Block Diagram) of VVVF (Variable Voltage Variable Frequency) urban transit, and developing a web based reliability evaluation system. Historical maintenance data in terms of reliability index can be derived from the web based reliability evaluation system. In this paper, we propose applying inverse problem analysis method and hybrid neuro-genetic algorithm to system reliability optimization for using historical maintenance data in database of web based system. Feed-forward multi-layer neural networks trained by back propagation are used to find out the relationship between several component reliability (input) and system reliability (output) of structural system. The inverse problem can be formulated by using neural network. One of the neural network training algorithms, the back propagation algorithm, can attain stable and quick convergence during training process. Genetic algorithm is used to find the minimum square error.

A Study to the Development of Reliability/Availability Management System of the Urban Transit EMU' Maintenance (도시철도차량 신뢰도/가용도 관리시스템 개발을 위한 기초연구)

  • Park, Kee-Jun;Chung, Jong-Duck;Han, Seok-Youn;Suh, Myung-Won
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.619-627
    • /
    • 2009
  • It is very important that reduce the maintenance cost and extend life time of the urban transit EMU through effective maintenance method research. The maintenance cost of the urban transit EMU shares 70%$\sim$80% of it's life cycle cost. It means that the maintenance cost is bigger than the introduction cost of the urban transit EMU. In this study, we were survey and analysis for the reliability centered maintenance of internal and external many industry parts. Finally, we suggested the reliability/availability management System of the Urban Transit EMU' Maintenance.

  • PDF

Application of first-order reliability method in seismic loss assessment of structures with Endurance Time analysis

  • Basim, Mohammad Ch.;Estekanchi, Homayoon E.;Mahsuli, Mojtaba
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.437-447
    • /
    • 2018
  • Computational cost is one of the major obstacles for detailed risk analysis of structures. This paper puts forward a methodology for efficient probabilistic seismic loss assessment of structures using the Endurance Time (ET) analysis and the first-order reliability method (FORM). The ET analysis efficiently yields the structural responses for a continuous range of intensities through a single response-history analysis. Taking advantage of this property of ET, FORM is employed to estimate the annual rate of exceedance for the loss components. The proposed approach is an amalgamation of two analysis approaches, ET and FORM, that significantly lower the computational costs. This makes it possible to evaluate the seismic risk of complex systems. The probability distribution of losses due to the structural and non-structural damage as well as injuries and fatalities of a prototype structure are estimated using the proposed methodology. This methodology is an alternative to the prevalent risk analysis framework of the total probability theorem. Hence, the risk estimates of the proposed approach are compared with those from the total probability theorem as a benchmark. The results indicate a satisfactory agreement between the two methods while a significantly lower computational demand for the proposed approach.

A Software Reliability Cost Model Based on the Shape Parameter of Lomax Distribution (Lomax 분포의 형상모수에 근거한 소프트웨어 신뢰성 비용모형에 관한 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.171-177
    • /
    • 2016
  • Software reliability in the software development process is an important issue. Software process improvement helps in finishing with reliable software product. Infinite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this study, reliability software cost model considering shape parameter based on life distribution from the process of software product testing was studied. The cost comparison problem of the Lomax distribution reliability growth model that is widely used in the field of reliability presented. The software failure model was used the infinite failure non-homogeneous Poisson process model. The parameters estimation using maximum likelihood estimation was conducted. For analysis of software cost model considering shape parameter. In the process of change and large software fix this situation can scarcely avoid the occurrence of defects is reality. The conditions that meet the reliability requirements and to minimize the total cost of the optimal release time. Studies comparing emissions when analyzing the problem to help kurtosis So why Kappa efficient distribution, exponential distribution, etc. updated in terms of the case is considered as also worthwhile. In this research, software developers to identify software development cost some extent be able to help is considered.