• Title/Summary/Keyword: Cosmo-Skymed SAR data

Search Result 2, Processing Time 0.017 seconds

Time-series InSAR Analysis and Post-processing Using ISCE-StaMPS Package for Measuring Bridge Displacements

  • Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin;Kim, Young Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.527-534
    • /
    • 2020
  • This study aims to monitor the displacement of the bridges using Stanford Method for Persistent Scatterers (StaMPS) time-series Persistent Scatterer Interferometric Synthetic Aperture Radar analysis. For case study bridges: Kimdaejung bridge and Deokyang bridge, we acquired 60 and 33 Cosmo-Skymed Synthetic Aperture Radar (SAR) data over the Mokpo region and Yeosu region, respectively from 2013 to 2019. With single-look interferograms, we estimated the long-term time-series displacements over the bridges. The time-series displacements were estimated as -8.8 mm/year and -1.34 mm/year at the mid-span over the selected bridges: Kimdaejung and Deokyang bridge, respectively. This time-series displacement provides reliable and high spatial resolution information to monitor the structural behavior of the bridge for preventing structural behaviors.

Change detection algorithm based on amplitude statistical distribution for high resolution SAR image (통계분포에 기반한 고해상도 SAR 영상의 변화탐지 알고리즘 구현 및 적용)

  • Lee, Kiwoong;Kang, Seoli;Kim, Ahleum;Song, Kyungmin;Lee, Wookyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.227-244
    • /
    • 2015
  • Synthetic Aperture Radar is able to provide images of wide coverage in day, night, and all-weather conditions. Recently, as the SAR image resolution improves up to the sub-meter level, their applications are rapidly expanding accordingly. Especially there is a growing interest in the use of geographic information of high resolution SAR images and the change detection will be one of the most important technique for their applications. In this paper, an automatic threshold tracking and change detection algorithm is proposed applicable to high-resolution SAR images. To detect changes within SAR image, a reference image is generated using log-ratio operator and its amplitude distribution is estimated through K-S test. Assuming SAR image has a non-gaussian amplitude distribution, a generalized thresholding technique is applied using Kittler and Illingworth minimum-error estimation. Also, MoLC parametric estimation method is adopted to improve the algorithm performance on rough ground target. The implemented algorithm is tested and verified on the simulated SAR raw data. Then, it is applied to the spaceborne high-resolution SAR images taken by Cosmo-Skymed and KOMPSAT-5 and the performances are analyzed and compared.