• Title/Summary/Keyword: Cosedimentation

Search Result 3, Processing Time 0.018 seconds

Two Kinesins from Arabidopsis, KatB and KatC, Have a Second Microtubule-binding Site in the Tail Domain

  • Jiang, Shiling;Li, Ming;Xu, Tao;Ren, Dongtao;Liu, Guoqin
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.44-52
    • /
    • 2007
  • Kinesins, as a kind of microtubule-based motor proteins, have a conserved microtubule-binding site in their motor domain. Here we report that two homologous kinesins in Arabidopsis thaliana, KatB and KatC, contain a second microtubule-binding site in their tail domains. The prokaryotic-expressed N-terminal tail domain of the KatC heavy chain can bind to microtubules in an ATP-insensitive manner. To identify the precise region responsible for the binding, a serious of truncated KatC cDNAs encoding KatC N-terminal regions in different lengths, KatC1-128, KatC1-86, KatC1-73 and KatC1-63, fused to Histidine-tags, were expressed in E. coli and affinity-purified. Microtubule cosedimentation assays show that the site at amino acid residues 74-86 in KatC is important for microtubule-binding. By similarity, we obtained three different lengths of KatB N-terminal regions, KatB1-384, KatB1-77, and KatB1-63, and analyzed their microtubule-binding ability. Cosedimentation assays indicate that the KatB tail domain can also bind to microtubules at the same site as and in a similar manner to KatC. Fluorescence microscopic observations show that the microtubule-binding site at the tail domain of KatB or KatC can induce microtubules bundling only when the stalk domain is present. Through pull-down assays, we show that KatB1-385 and KatC1-394 are able to interact specifically with themselves and with each other in vitro. These findings are significant for identifying a previously uncharacterized microtubule-binding site in the two kinesin proteins, KatB and KatC, and the functional relations between them.

Cotton GhKCH2, a Plant-specific Kinesin, is Low-affinitive and Nucleotide-independent as Binding to Microtubule

  • Xu, Tao;Sun, Xuewei;Jiang, Shiling;Ren, Dongtao;Liu, Guoqin
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.723-730
    • /
    • 2007
  • Kinesin is an ATP-driven microtubule motor protein that plays important roles in control of microtubule dynamics, intracellular transport, cell division and signal transduction. The kinesin superfamily is composed of numerous members that are classified into 14 subfamilies. Animal kinesins have been well characterized. In contrast, plant kinesins have not yet to be characterized adequately. Here, a novel plant-specific kinesin gene, GhKCH2, has been cloned from cotton (Gossypium hirsutum) fibers and biochemically identified by prokaryotic expression, affinity purification, ATPase activity assay and microtubule-binding analysis. The putative motor domain of GhKCH2, $M_{396-734}$ corresponding to amino acids Q396-N734 was fused with 6$\times$His-tag, soluble-expressed in E. coli and affinity-purified in a large amount. The biochemical analysis demonstrated that the basal ATPase activity of $M_{396-734}$ is not activated by $Ca^{2+}$, but stimulated 30-fold max by microtubules. The enzymatic activation is microtubule-concentration-dependent, and the concentration of microtubules that corresponds to half-maximum activation was about 11 ${\mu}M$, much higher than that of other kinesins reported. The cosedimentation assay indicated that $M_{396-734}$ could bind to microtubules in vitro whenever the nucleotide AMP-PNP is present or absent. As a plant-specific microtubule-dependent kinesin with a lower microtubule-affinity and a nucleotide-independent microtubule-binding ability, cotton GhKCH2 might be involved in the function of microtubules during the deposition of cellulose microfibrils in fibers or the formation of cell wall.

Glutamine Residue at 276 of smooth muscle α-tropomyosin is primarily responsible for higher actin affinity (평활근 α-트로포마이오신 Gln276잔기의 액틴친화력에 대한 중요성)

  • Jung, Sun-Ju;Cho, Young-Joon
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.204-210
    • /
    • 2007
  • Previous reports indicated that the carboxyl terminal residues, glutamine276-threonine277 in particular, were important for actin affinity of the unacetylated smooth ${\alpha}-tropomyosin$. To determine the role of the glutamine and threonine residues in C-terminal region in actin binding, we constructed mutant striated muscle ${\alpha}-tropomyosin$ (TMs), in which these two residues were individually substituted. These mutant tropomyosins, designated TM18 (HT) and TM19 (QA), were overexpressed in E. coli as an either unacetylated form or Ala-Ser. (AS) dipeptide fusion form, and were analyzed F-actin affinity by cosedimentation. Unacetylated TM19 (QA) bound to actin approximately three times stronger than TM18 (HT) and much stronger than ST (HA). AS/TM19 (QA) showed four times stronger, in actin affinity than AS/ST (HA) while AS/TM14 (QT) bound to actin stronger to some extent than AS/TM18 (HT). These results suggested that the presence of Gln residue at 276 be primarily attributed to higher actin affinity of smooth ${\alpha}-tropomyosin$.