• 제목/요약/키워드: Corynebacterium glutamicum glutamicum

검색결과 143건 처리시간 0.029초

Metabolic Characterization of the Corynebacterium glutamicum using DNA Microarray Technology

  • 조광명;장재우;김성준;박영훈
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.739-740
    • /
    • 2001
  • 37종의 주요 대사관련 유전자를 triplicate로 사용하여 DNA microarray를 제작하여 라이신 생산균주의 포도당과 원당을 탄소원으로 하여 배양시기에 따른 대사특성을 분석하였다. 포도당과 원당 사용시 C3, C4 대사산물의 변환에 관련된 anaplerosis에 관여하는 유전자의 발현변화가 매우 중요함을 파악할 수 있었다. 또한 배양시기에 따라 매우 특이적인 유선자 발현 양상을 보임을 학인할 수 있었다.

  • PDF

Corynebacteria-E. coli shuttle vector pKU6의 분리 및 확인 (Isolation and characterization of corynebacteria-E. coli shuttle vector pKU6 from coryneform bacteria)

  • 허태린;이진우;이세영
    • 미생물학회지
    • /
    • 제22권4호
    • /
    • pp.249-255
    • /
    • 1984
  • To develop the host-vector system for industrial Coryneform bacteria that seemed to be the most suitable microorganisms for molecular breeding of genes involved in the production of amion acids, nucleotides, and other products of industrial interest, broad host range E. coli plasmid R 1162 DNA was transformed into Brevibacterium ammoniagenes and the plasmids pKU6 isolated from a transformant was physically characterized. All other plasmids from the transformed cells except pKU6 exsisted as multimeric forms in Brevibacterium ammoniagenes. The plasmid DNA was retransformed into Corynebacterium glutamicum with a high frequency ($1.32{\times}10^{-1}$ per cell) and maintained stably both in Brevibacterium ammoniagenes and Corynebacterium glutamicum after 100 generations of cultures with 25-30 copy number per cell. The size of both plasmid pKU6 and plasmid R1162 were the same and restriction maps by EcoR I, Ava I, Pst I, Pvu II and Hinc II were also similar.

  • PDF

Accelerated Growth of Corynebacterium glutamicum by Up-Regulating Stress-Responsive Genes Based on Transcriptome Analysis of a Fast-Doubling Evolved Strain

  • Park, Jihoon;Lee, SuRin;Lee, Min Ju;Park, Kyunghoon;Lee, Seungki;Kim, Jihyun F.;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1420-1429
    • /
    • 2020
  • Corynebacterium glutamicum, an important industrial strain, has a relatively slower reproduction rate. To acquire a growth-boosted C. glutamicum, a descendant strain was isolated from a continuous culture after 600 generations. The isolated descendant C. glutamicum, JH41 strain, was able to double 58% faster (td=1.15 h) than the parental type strain (PT, td=1.82 h). To understand the factors boosting reproduction, the transcriptomes of JH41 and PT strains were compared. The mRNAs involved in respiration and TCA cycle were upregulated. The intracellular ATP of the JH41 strain was 50% greater than the PT strain. The upregulation of NCgl1610 operon (a putative dyp-type heme peroxidase, a putative copper chaperone, and a putative copper importer) that presumed to role in the assembly and redox control of cytochrome c oxidase was found in the JH41 transcriptome. Plasmid-driven expression of the operon enabled the PT strain to double 19% faster (td=1.82 h) than its control (td=2.17 h) with 14% greater activity of cytochrome c oxidase and 27% greater intracellular ATP under the oxidative stress conditions. Upregulations of genes those might enhance translation fitness were also found in the JH41 transcriptome. Plasmid-driven expressions of NCgl0171 (encoding a cold-shock protein) and NCgl2435 (encoding a putative peptidyl-tRNA hydrolase) enabled the PT to double 22% and 32% faster than its control, respectively (empty vector: td=1.93 h, CspA: td=1.58 h, and Pth: td=1.44 h). Based on the results, the factors boosting growth rate in C. gluctamicum were further discussed in the viewpoints of cellular energy state, oxidative stress management, and translation.