• 제목/요약/키워드: Corynebacterium glutamicum glutamicum

검색결과 143건 처리시간 0.018초

Escherichia coli와 Corynebacterium glutamicum간의 shuttle vectors의 C. glutamicum에서의 안정성에 대한 클론된 유전자의 영향 (Effects of Cloned Genes on the Stability of Shuttle Vectors between Escherichia coli and Corynebacterium glutamicum)

  • 노갑수;김성준;오종원;이현환;현형환;이재흥
    • 미생물학회지
    • /
    • 제29권3호
    • /
    • pp.149-154
    • /
    • 1991
  • Escherichia coli/Corynebacterium glutamicum shuttle vectors, pECCG1 and pECCG2 were constructed by joining a 3.00 kb cryptic plasmid pCB 1 from C. glutamicum and a 3.94 kb plasmid pACYC 177 from E. coli. By trimming unessential parts and introducing mulitiple cloning site into the plasmid pECCG 1, a plasmid pECCG122(5.1kb) was constructed. All the shuttle vectors were stably maintained in C. glutamicum up to about 40 generations irrespective of kanamycin addition in the medium. Threonine operon (homoserine dehydrogenase/homoserine kinase) and dapA gene (dihydrodipicolinate synthetase) of C. glutamicum were cloned into the plasmid pECCG122, and the resultant plasmids were designated pTN31 and pDHDP19, respectively. They were used to study the effect of cloned foreign gene on the stability of the plasmid pECCG122. Plasmids pTN31 and pDHDP19 were segregated rapidly from C. glutamicum when cultured in the medium without kanamycin. In medium with $50\mu${\g/ml} of kanamycin, their segregation rates were much slower than those in medium without kanamycin, but the danamycin addition didn't guarantee the complete maintenance of the plasmids in C. glutamicum.

  • PDF

Dihydrodipicolinate Synthetase를 코딩하는 Corynebacterium glutamicum의 dapA 유전자의 클로닝 및 발현 (Molecular Cloning and Expression of dapA, the Gene for Dihydrodipicolinate Synthetase of Corynebacterium glutamicum)

  • 오종원;한종권;이현환;현형환;이재흥;스테판정
    • 미생물학회지
    • /
    • 제29권4호
    • /
    • pp.203-208
    • /
    • 1991
  • The dapA-complementing gene (L-2, 3-dihydrodipicolinate synthetase: DHDP synthetase, dapA) has been cloned by using a cosmid genomic bank of Corynebacterium glutamicum JS231 that is a lysine overproducer, AEC (s-(2-aminoethyl)-L-cysteine) resistant mutant. By enzymatic deletion analysis, the DNA region complementing the escherichia coli dapA host could be confined to 4.5kb SalI-generated DNA fragment. This DNA fragment was inserted into the C. glutamicum/E. coli shuttle vector pECCG117 to construct pDHDP5812. The specific activity of DHDP synthetase detected in C. glutamicum JS231/pDHDP5812 was increased about 10 fold above that of C. glutamicum JS231. The addition of leucine during growth did not repress the expressin of dapA, and the enzyme activity was not inhibited by lysine.

  • PDF

Genetic Regulation of Corynebacterium glutamicum Metabolism

  • Wendisch Volker F.
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.999-1009
    • /
    • 2006
  • Physiological, biochemical and genetic studies of Corynebacterium glutamicum, a workhorse of white biotechnology used for amino acid production, led to a waste knowledge mainly about amino acid biosynthetic pathways and the central carbon metabolism of this bacterium. Spurred by the availability of the genome sequence and of genome-based experimental methods such as DNA microarray analysis, research on genetic regulation came into focus. Recent progress on mechanisms of genetic regulation of the carbon, nitrogen, sulfur and phosphorus metabolism in C. glutamicum will be discussed.

Corynebacterium glutamicum 아미노산 유사체 저항성 돌연변이 균주에 의한 L-로이신의 생산 (L-Leucine Production using Amino Acid Analogues-resistant Mutants of Corynebacterium glutamicum)

  • 김용욱;신현철;성진석;전영중;고중환;이재흥
    • 한국미생물·생명공학회지
    • /
    • 제26권1호
    • /
    • pp.45-49
    • /
    • 1998
  • Corynebacterium glutamicum ATCC13032를 모균주로 한 아미노산 유사체들에 저항성을 지닌 돌연변이 균주들로부터 두 종류의 L-로이신 생산균주를 개발하였다. 그 중 하나인 C. glutamicum LT26은 4-azaleucine과 $\alpha$-amino-$eta$-hydroxyvaleric acid에 저항성을 지니는 균주이며, 다른 한 균주는 C. glutamicum LT3811-70로서 C. glutamicum LT26을 모균주로한 DL-4-tiaisoleucine 저항성 돌연변이 균주이다. 이들 두 돌연변이 균주들의 배양액내에서의 L-로이신의 축적은 이들이 비영양요구성 균주임에도 불구하고 모균주보다 획기적으로 높았으며 이를 해명하고자 L-이소로이신과 L-발린 그리고 L-로이신 생합성 과정의 주반응 효소인 $\alpha$-acetohydroxy acid synthase(AHAS)와 $\alpha$-isopropylmalate synthase(IPMS)의 분석을 수행하였다. C. glutamicum LT26과 LT3811-70에서 AHAS와 IPMS는 모두 L-로이신에 대해 효소활성저해와 효소합성저해가 거의 해제되었고, C. glutamicum LT3811-70 균주의 경우 모균주인 C. glutamicum LT26 균주보다 IPMS의 L-로이신에 대해 효소 합성저해가, AHAS는 L-이소로이신과 L-발린등에 대해 효소활성저해가 10% 이상 더 해제되었음을 알 수 있었다.

  • PDF

The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse

  • Lee, Joo-Young;Na, Yoon-Ah;Kim, Eungsoo;Lee, Heung-Shick;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권5호
    • /
    • pp.807-822
    • /
    • 2016
  • Starting as a glutamate producer, Corynebacterium glutamicum has played a variety of roles in the industrial production of amino acids, one of the most important areas of white biotechnology. From shortly after its genome information became available, C. glutamicum has been applied in various production processes for value-added chemicals, fuels, and polymers, as a key organism in industrial biotechnology alongside the surprising progress in systems biology and metabolic engineering. In addition, recent studies have suggested another potential for C. glutamicum as a synthetic biology platform chassis that could move the new era of industrial microbial biotechnology beyond the classical field. Here, we review the recent progress and perspectives in relation to C. glutamicum, which demonstrate it as one of the most promising and valuable workhorses in the field of industrial biotechnology.

Gene Amplification of aceA and aceB in Lysine-producing Corynebacterium glutamicum ssp. lactofermentum ATCC21799

  • Kim, Hyung-Joon;Kim, Youn-Hee;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권5호
    • /
    • pp.287-292
    • /
    • 1997
  • The role of glyoxylate bypass in lysine production by Corynebacterium glutamicum ssp. lactofermentum ATCC21799 was analyzed by using cloned aceA and aceB genes which encode enzymes catalyzing the bypass. Introduction of a plasmid carrying aceA and aceB to the strain increased enzyme activities of the bypass to approximately 5 fold on acetate minimal medium. The strain with amplified glyoxylate bypass excreted 25% more lysine to the growth medium than the parental strain, apparently due to the increased availability of intracellular oxaloacetate. The final cell yield was lower in the strain with amplified glyoxylate bypass. These changes were specific to the lysine-producing C. glutamicum ssp. lactofermentum ATCC21799, since the lysine-nonproducing wild type Corynebacterium glutamicum strain grew faster and achieved higher cell yield when the glyoxylate bypass was amplified. These findings suggest that the lysine producing C. glutamicum ssp. lactofermentum ATCC21799 has the ability to efficiently channel oxaloacetate, the TCA cycle intermediate, to the lysine biosynthesis pathway whereas lysine-nonproducing strains do not. Our results show that amplification of the glyoxylate bypass efficiently increases the intracellular oxaloacetate in lysine producing Corynebacterium species and thus results in increased lysine production.

  • PDF

Growth Response of Avena sativa in Amino-Acids-Rich Soils Converted from Phenol-Contaminated Soils by Corynebacterium glutamicum

  • Lee, Soo-Youn;Kim, Bit-Na;Choi, Yong-Woo;Yoo, Kye-Sang;Kim, Yang-Hoon;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권4호
    • /
    • pp.541-546
    • /
    • 2012
  • The biodegradation of phenol in laboratory-contaminated soil was investigated using the Gram-positive soil bacterium Corynebacterium glutamicum. This study showed that the phenol degradation caused by C. glutamicum was greatly enhanced by the addition of 1% yeast extract. From the toxicity test using Daphnia magna, the soil did not exhibit any hazardous effects after the phenol was removed using C. glutamicum. Additionally, the treatment of the phenol-contaminated soils with C. glutamicum increased various soil amino acid compositions, such as glycine, threonine, isoleucine, alanine, valine, leucine, tyrosine, and phenylalanine. This phenomenon induced an increase in the seed germination rate and the root elongation of Avena sativa (oat). This probably reflects that increased soil amino acid composition due to C. glutamicum treatment strengthens the plant roots. Therefore, the phenol-contaminated soil was effectively converted through increased soil amino acid composition, and additionally, the phenol in the soil environment was biodegraded by C. glutamicum.

Corynebacterium glutamicum에서 발현된 L-Threonine Aldolase를 이용한 파킨슨병 치료제 L-threo-2,3-Dihydroxyphenylserine (L-threo-DOPS)의 합성 (Synthesis of L-threo-2,3-Dihydroxyphenylserine (L-threo-DOPS) by Thermostable L-Threonine Aldolase Expressed in Corynebacterium glutamicum R)

  • 백상호
    • 한국미생물·생명공학회지
    • /
    • 제36권2호
    • /
    • pp.128-134
    • /
    • 2008
  • Erro-prone PCR에 의해서 열안정성이 향상된 Streptomyces coelicolor A(3) 유래의 L-threonine aldolase를 Corynebacterium glutamicum R에서 과잉발현시키기 위하여 Corynebacterium용 vector plasmid인 pCRB1의 SD배열과 개시코든사이의 1염기를 제거한 고발현용 vector plasmid인 pCG-H44(2)를 구축하였다. pCG-H (2)에 의해서 형질전환된 C. glutamicum R 균주(CGH44-2)에서 L-TA를 발현시킨 결과, 기존의 Corynebacterium용 vector plasmid인 pCRB1(CGH44-1)보다 L-TA의 발현량이 높았다. L-threo-DOPS의 합성을 위한 최적조건은 $30^{\circ}C$, 0.1 M cirtric acid buffer(pH 7.0)이었으며, 0.1% TritonX-100를 첨가하였을 경우 보다 높은 활성을 보였다. 최적조건하에서 CGH44-2를 whole cell biocatalyst로 이용한 반복회분식반응에서 재조합대장균을 숙주로 이용한 경우보다 재조합Corynebacterium을 이용하였을 경우, 목적하는 L-threo-DOPS의 합성이 안정적으로 이루어졌다.

Brevibacterium flavum과 Corynebacterium glutamicum의 이속간 원형질체 융합에 의한 L-라이신 생산균주 개발 (Development of L-Lysine Producing Strains by Intergeneric Protoplast Fusion of Brevibacterium flavum and Corynebacterium glutamicum)

  • Kyung, Ki-Cheon;Lim, Bun-Sam;Lee, Se-Yong;Chun, Moon-Jin
    • 한국미생물·생명공학회지
    • /
    • 제13권3호
    • /
    • pp.279-283
    • /
    • 1985
  • L-Lysine생산균주 육종의 한 방법으로, Brevibacterium flavum과 Corynebacterium glutamicum의 이속간 원형질체 융합을 실시하였으며, 이들 균주에 대한 원형질체 형성과 재생의 최적 조건을 조사하였다. 그 결과, Corynebacterium glutamicum ATCC 21514 S의 경우, lysozyme을 300$\mu\textrm{g}$/$m\ell$의 농도로 처리하였을 때 12시간 경과 후 99%의 원형질체 형성과 12%의 재생율을 보였으며, Brevibacterium flavum ATCC 21528R 은 lysozyme을 400$\mu\textrm{g}$/$m\ell$로 처리했을 때 12시간 경과 후 99%의 원형질체 형성과 10%의 재생율을 보였다. Brevibacterium flavum ATCC 21514 S 의 이속간 원형질체 융합에서 PEG 농도별 실험을 하여본 결과 PEG 6,000, 30% (w/v)를 사용함으로써 재생세포당 1.2$\times$$10^{-5}$의 재조합 빈도를 얻었으며, 여기에서 얻어진 재조합주들 가운데 KR$_{43}$ 주는 L-lysine 생성능이 모균보다 12% 증가를 나타내었으며, as-partokinase 효소 활성 측정치는 모균보다 13% 높은 것으로 나타났다.

  • PDF

Corynebacterium glutamicum의 탄소대사 및 총체적 탄소대사 조절 (Carbon Metabolism and Its Global Regulation in Corynebacterium glutamicum)

  • 이정기
    • 한국미생물·생명공학회지
    • /
    • 제38권4호
    • /
    • pp.349-361
    • /
    • 2010
  • 본 총설에서는 아미노산의 공업적 생산균인 Corynebacterium glutamicum의 탄소 대사 및 이와 관련된 총체적 조절 메커니즘에 대한 최근의 연구를 정리하였다. C. glutamicum의 산업적 발효을 위한 기질로서 사용되는 당밀은 주로 sucrose, glucose, fructose로 이루어져 있으며, 이들 당은 phosphotransferase system을 통해서 수송된다. C. glutamicum의 탄소 대사 특징은 glucose가 다른 당이나 유기산 등과 함께 존재할 때, glucose와 이러한 탄소원 들을 동시에 대사한다. 그러나 glucose/glutamate 혹은 glucose/ethanol 등의 혼합물에서 는 탄소원의 순차적 이용으로 인해 나타나는 diauxic growth 현상을 나타내며, 이러한 carbon catabolite repression(CCR) 현상은 E. coli나 B. subtilis 등에서 알려진 것과는 다른 독특한 분자적 메커니즘과 조절 circuits을 가지고 있음이 밝혀지고 있다. C. glutamicum의 CRP homologue인 GlxR은 acetate 대사를 포함하여 glycolysis, gluconeogenesis 및 TCA cycle 등을 포함하는 중심탄소대사 조절 뿐만 아니라, 다양한 세포 기능의 조절에 관여하는 총체적 조절 단백질로서의 역할이 제시되고 있다. C. glutamicum의 adenylate cyclase(AC)는 막과 결합된 class IIIAC 로서, 막 단백질의 특성상 아직 규명되어 있지 않은 세포 외부의 환경 변화에 대응하여 세포 내의 cAMP합성 수준을 조절할 수 있는 sensor로 추정할 수 있다. 특히 C. glutamicum의 경우 배지내 glucose 를 비롯한 탄소원과 cAMP 농도와의 관련성이 E. coli에서 알려진 교과서적 지식과는 상반되게 변화하는 경향을 보이고 있어, cAMP signaling에 의한 세포 내 regulatory network 등은 향후 풀어야 할 의문으로 남아있다. 탄소대사 조절의 최상위에 존재하며 global 조절자인 GlxRcAMP 복합체 이외에도 차상위 전사조절 단백질로서 RamB, RamA, SugR 등이 존재하여 다양한 탄소대사를 조절한다. 최근 들어서는 새로운 탄소원으로서 대두되고 있는 biomass 관련 기질들을 이용할 수 있는 C. glutamucum 균주 구축을 통하여 이용 기질의 범위를 확대시키고자 하는 연구 및 탄소 대사와 관련하여 L-lysine의 발효 수율 혹은 생산성을 향상시키고자 하는 다양한 분자적 균주 육종 연구 등이 수행되고 있다.