• Title/Summary/Keyword: Cortical damage

Search Result 116, Processing Time 0.027 seconds

Gait Analysis and Functional Outcomes Following Pan Tarsal Arthrodesis of Tarsal Joint in a Toy Poodle

  • Song, Jaeyong;Kim, Jun-Hyung;Woo, Heung-Myoung;Kang, Byung-Jae
    • Journal of Veterinary Clinics
    • /
    • v.36 no.2
    • /
    • pp.123-125
    • /
    • 2019
  • A 12-year-old castrated Toy Poodle was referred with a continuous non-weight bearing lameness of right hind limb due to a traffic accident 9 years ago. Physical examination and radiographs revealed partial loss of right calcaneal bone, loss of Achilles tendon and disused muscular atrophy. Arthrodesis was performed to preserve the function of the right hind limb. Pan tarsal arthrodesis plate was applied medially with 2.7 mm cortical screws and 2.0 mm cortical screws. During fixation, cancellous bone chip was transplanted into the arthrodesis site. A bone union was confirmed 9 weeks after surgery. Furthermore, on the gait analysis, the weight-bearing of right hind limb was restored to 70% of the opposite hind limb. Arthrodesis can be used to treat more difficult and serious problems affecting the joints. In particular, arthrodesis is indicated in cases such as comminuted intraarticular fractures and irreparable injury of the calcaneal tendon apparatus in the hock joint. In this case, the pan tarsal arthrodesis provided stability to the hock joint and improved the gait by restoring severe chronic damage. In conclusion, we successfully treated a challenging disability of hock joint using pan tarsal arthrodesis to restore the legs that were non-weight bearing due to chronic injury by traffic accident and objectively ascertained the increased weight bearing by gait analysis.

A Simple Method for Predicting Hippocampal Neurodegeneration in a Mouse Model of Transient Global Forebrain Ischemia

  • Cho, Kyung-Ok;Kim, Seul-Ki;Cho, Young-Jin;Sung, Ki-Wug;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.167-172
    • /
    • 2006
  • In the present study, we developed a simple method to predict the neuronal cell death in the mouse hippocampus and striatum following transient global forebrain ischemia by evaluating both cerebral blood flow and the plasticity of the posterior communicating artery (PcomA). Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral occlusion of the common carotid artery (BCCAO) for 30 min. The regional cerebral blood flow (rCBF) was measured by laser Doppler flowmetry. The plasticity of PcomA was visualized by intravascular perfusion of India ink solution. When animals had the residual cortical microperfusion less than 15% as well as the smaller PcomA whose diameter was less than one third compared with that of basilar artery, neuronal damage in the hippocampal subfields including CA1, CA2, and CA4, and in the striatum was consistently observed. Especially, when mice met these two criteria, marked neuronal damage was observed in CA2 subfield of the hippocampus. In contrast, after transient BCCAO, neuronal damage was consistently produced in the striatum, dependent more on the degree of rCBF reduction than on the plasticity of PcomA. The present study provided simple and highly reproducible criteria to induce the neuronal cell death in the vulnerable mice brain areas including the hippocampus and striatum after transient global forebrain ischemia.

Neuroprotective effects of the antioxidant action of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride against ischemic neuronal damage in the brain

  • Ha, Seung Cheol;Han, A Reum;Kim, Dae Won;Kim, Eun-A;Kim, Duk-Soo;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.46 no.7
    • /
    • pp.370-375
    • /
    • 2013
  • Ischemia is characterized by oxidative stress and changes in the antioxidant defense system. Our recent in vitro study showed that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects cortical astrocytes against oxidative stress. In the current study, we examined the effects of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride on ischemia-induced neuronal damage in a gerbil ischemia/reperfusion models. Extensive neuronal death in the hippocampal CA1 area was observed 4 days after ischemia/reperfusion. Intraperitoneal injection of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride (0.3 mg/kg body weight) significantly prevented neuronal death in the CA1 region of the hippocampus in response to transient forebrain ischemia. 2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride administration reduced ischemia-induced increases in reactive oxygen species levels and malondialdehyde content. It also attenuated the associated reductions in glutathione level and superoxide dismutase, catalase, and glutathione peroxidase activities. Taken together, our results suggest that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects against ischemia-induced neuronal damage by reducing oxidative stress through its antioxidant actions.

Effects of Aluminium on Growth, Chlorophyll Content, ALAD Activity and Anatomy of Root rind Shoot in Azuki Bean (Vigna angularis) Seedlings (Aluminium이 팥(Vigna angularis) 유식물의 생장, 엽록소함량, ALAD활성 및 뿌리와 경엽부의 형태에 미치는 영향)

  • 구서영;홍정희
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.813-826
    • /
    • 1996
  • The toxic effects of aluminium (Al) on growth, chlorophyll content, $\delta-aminolevulinic$ acid dehydratase (ALAD) activity and anatomy of root and shoot were investigated in 7-day-old azuki bean (Vigna angularis) seedlings. Significant depressions in root elongation was observed in the low concentrations of Al (50, 100 $\muM)$ and increasing Al concentrations caused a sharp decline of root and shoot growth. The degree of inhibition was dependent upon Al supply. Exposure to 50 $\muM$ Al or more inhibited root elongation within 1 day. In the 50 $\muM$ Al treatments, a recovery of root growth was seen after 7 days exposure. In contrast, lateral root initials was little affected by Al exposure. Al toxicity symptoms and growth responses were more well developed in the roots than in the shoots. Analysis of Al localization in root cells by hematoxylin stAlning showed that Al entered root apices and accumulated in the epidermal and cortical cells immeadiately below the epidermis. There was a good positive correlation between the level of chlorophyll and ALAD activity. Increasing Al concentrations caused a decrease in total chlorophyll contents, accompanied by proportional changes in ALAD activity, suggesting a cootr-dinated reduction of a photosynthetic machinery. Al exerted specific influence on the morphology of root ann shoot. At higher concentrations of Al the roots induced drastic anatomical changes. The epidermal cells were disorganized or destructed while the cortical cells exhibited distortion of cell shape and/or disintegration. The diameter of root and transectional area of cortical cells decreased considerably with Al treatment. In the shoot Al also enhanced reduction of diameter of shoot and cell size. Gross anatomy of leaves treated with Al did not differ significantly from the controls, except for fewer and smaller chloroplast. Our results indicate that toxic effect of Al appear to be manifested primarily in roots and secondarily on shoots, and changes in root morphology are related to changes in the root growth patterns. Results are further discussed in re181ion to the findings in other plant species, and it is concluded that Al causes morphological, structural and, presumably, functional damage to the roots of the species investigated.

  • PDF

The Neuroprotective Effects of InSamYangYoung-tang(Renshenyangrongtang) on Aβ-induced Damages in Mice (인삼양영탕(人蔘養榮湯)이 Aβ를 처리한 PC12 세포와 생쥐의 손상 뇌신경조직에 미치는 영향)

  • Jang, Young-Joo;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.21 no.1
    • /
    • pp.109-124
    • /
    • 2010
  • Objectives: This experiment was designed to investigate the effect of the InSamYangYoung-tang(Renshenyangrongtang) extract on $A{\beta}$-induced AD model. Methods: The effects of the InSamYangYoung-tang(Renshenyangrongtang) extract on neural damages of cultured PC12 cells induced by $A{\beta}$ were investigated. The effects of the InSamYangYoung-tang(Renshenyangrongtang) extract on neural damages of hippocampal and cortical neurons in the mouse induced by $\beta$-amyloid were investigated. Results: 1. $A{\beta}$ treatment into neuronal cells activated cell death pathway when analyzed by MTT assay and by histological analysis. Then InSamYangYoung-tang(Renshenyangrongtang) treatment improved cell survival to a similar level as in normal group. 2. $A{\beta}$ treatment increased caspase 3 protein levels but decreased phospho-Erk1/2 in neuronal cells. InSamYangYoung-tang(Renshenyangrongtang) treatment reversed the production levels of two proteins close to those in normal group. 3. $A{\beta}$ treatment induced the atrophy of neuronal cells in terms of neuronal processes and cell body shrinkage, but InSamYangYoung-tang(Renshenyangrongtang) greatly improved their morphology. 4. Neuroprotective activity, as observed in InSamYangYoung-tang(Renshenyangrongtang)-treated groups, was similarly observed in cells treated with galantamine which was used as a positive control. Moreover, overall recovery pattern by InSamYangYoung-tang(Renshenyangrongtang) was similar between cultured PC12 cells and in vivo hippocampal and cerebral cortical neurons in the mouse brain. Conclusions: This experiment shows that the InSamYangYoung-tang(Renshenyangrongtang) may play a protective role in neural tissues damaged by cytotoxic substances. Since neuronal damage seen in degenerative brains such as AD are largely unknown, the current data may provide possible insight into therapeutic strategies for AD treatments. InSamYangYoung-tang(Renshenyangrongtang) might be effective for the treatment of AD. Investigation into the clinical use of the InSamYangYoung-tang(Renshenyangrongtang) for AD is suggested for future research.

Distribution of the lingual foramina in mandibular cortical bone in Koreans

  • Kim, Dae Hyun;Kim, Moon Yong;Kim, Chul-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.6
    • /
    • pp.263-268
    • /
    • 2013
  • Objectives: The interforminal region, between the mandibular foramen, is known as a relatively safe area that is free of anatomic structures, such as inferior alveolar nerve, submandibular fossa, and lingual side of the mandible is occasionally neglected for its low clinical importance. Even in the case of a severely constricted alveolus, perforation of the lingual cortical bone had been intended. However, anterior extension of the inferior alveolar canal, important anatomic structure, such as concavity of lingual bone, lingual foramina, and lingual canal, has recently been reported through various studies, and untypical bleeding by perforation of the lingual plate on implantation has also been reported. Therefore, in this study, we performed radiographic and statistical analysis on distribution and appearance frequencies of the lingual foramina that causes perforation of the mandibular lingual cortical bone to prevent complications, such as untypical bleeding, during surgical procedure. Materials and Methods: We measured the horizontal length from a midline of the mandible to the lingual foramina, as well as the horizontal length from the alveolar crest to the lingual foramina and from the lingual foramina to the mandibular border by multi-detector computed tomography of 187 patients, who visited Dankook University Dental Hospital for various reasons from January 1, 2008 to August 31, 2012. Results: From a total of 187 human mandibles, 110 (58.8%) mandibles had lingual foramina; 39 (20.9%) had bilateral lingual foramen; 34 (18.2%) had the only left lingual foramen; and 37 (19.8%) had the only right lingual foramen. Conclusion: When there is consistent bleeding during a surgical procedure, clinicians must consider damages on the branches of the sublingual artery, which penetrate the lingual foramina. Also, when there is a lingual foramina larger than 1 mm in diameter on a pre-implantation computed tomography, clinicians must beware of vessel damage. In order to prevent these complications and progress with a safe surgical procedure, a thorough radiographic examination before the surgery is indispensable. Further, clinicians should retract lingual flap definitely to confirm the shape of the lingual bone and existence of the lingual foramina.

The Effect of Extracellular Glutamate Release on Repetitive Transient Ischemic Injury in Global Ischemia Model

  • Lee, Gi-Ja;Choi, Seok-Keun;Eo, Yun-Hye;Kang, Sung-Wook;Choi, Sam-Jin;Park, Jeong-Hoon;Lim, Ji-Eun;Hong, Kyung-Won;Jin, Hyun-Seok;Oh, Berm-Seok;Park, Hun-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.23-26
    • /
    • 2009
  • During operations, neurosurgeons usually perform multiple temporary occlusions of parental artery, possibly resulting in the neuronal damage. It is generally thought that neuronal damage by cerebral ischemia is associated with extracellular concentrations of the excitatory amino acids. In this study, we measured the dynamics of extracellular glutamate release in 11 vessel occlusion(VO) model to compare between single occlusion and repeated transient occlusions within short interval. Changes in cerebral blood flow were monitored by laser-Doppler flowmetry simultaneously with cortical glutamate level measured by amperometric biosensor. From real time monitoring of glutamate release in 11 VO model, the change of extracellular glutamate level in repeated transient occlusion group was smaller than that of single occlusion group, and the onset time of glutamate release in the second ischemic episode of repeated occlusion group was delayed compared to the first ischemic episode which was similar to that of single 10 min ischemic episode. These results suggested that repeated transient occlusion induces less glutamate release from neuronal cell than single occlusion, and the delayed onset time of glutamate release is attributed to endogeneous protective mechanism of ischemic tolerance.

Protective Effect of Vitis amurensis Stems and Leaves Extract on Hydrogen Peroxide-induced Oxidative Neuronal Cell Damage in Cultured Neurons (과산화수소수로 유도된 배양 뇌신경세포손상에 대한 왕머루 잎과 줄기 추출물의 보호효과)

  • Kim, Joo-Youn;Ju, Hyun-Soo;Ban, Ju-Yeon;Song, Kyung-Sik;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.1
    • /
    • pp.68-74
    • /
    • 2009
  • Vitis amurensis (VA; Vitaceae) has long been used in oriental herbal medicine. It has been reported that roots and seeds of VA have anti-inflammatory and antioxidant effects. In the present study, the protective effect of ethanol extract from stems and leaves of VA on hydrogen peroxide (${H_2}{O_2}$) (100 ${\mu}M$)-induced neuronal cell damage was examined in primary cultured rat cortical neurons. VA (10-100 ${\mu}g$/ml) concentration-dependently inhibited ${H_2}{O_2}$-induced apoptotic neuronal cell death measured by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. VA inhibited ${H_2}{O_2}$-induced elevation of intracellular $Ca^{2+}$ concentration (${[Ca^{2+}]}_i$) and generation of reactive oxygen species (ROS), which were measured by fluorescent dyes. Pretreatment of VA also prevented glutamate release into medium induced by 100 ${\mu}M$ ${H_2}{O_2}$, which was measured by HPLC. These results suggest that VA showed a neuroprotective effect on ${H_2}{O_2}$-induced neuronal cell death by interfering with ${H_2}{O_2}$-induced elevation of ${[Ca^{2+}]}_i$, glutamate release, and ROS generation. This has a significant meaning of finding a new pharmacological activity of stems and leaves of VA in the CNS.

Effects of Chemical Anoxia Inducers on Cellular Functions of Cultured Rat Cortical Astrocytes (배양된 흰쥐 대뇌 피질 astrocytes의 세포기능에 대한 화학적 무산소증 유도물의 효과)

  • 이선애;박우규;성연희
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.851-860
    • /
    • 1999
  • The effects of antimycin A(AA), dodium azide ($NaN_3$) and 2,4-dinitrophenol (DNP), which inhibit mitochondrial ATP production, on cellular functions of cultured astrocytes were studied. High concentrations of AA $(50{\;}\mu\textrm{g}/ml),{\;}NaN_3$ (100mM) and DNP (20mM) significantly decreased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction, which was known to be related to mitochondrial function and then cel viability. AA ($50{\;}\mu\textrm{g}/ml$) increased lactate dehydrogenase (LDH) release and decreased [$^3H$] glutamate uptake, suggesting severe damage of cellular function by the concentrations of the compounds. Meanwhile, low concentrations of AA $(\leq{;\}10{\;}\mu\textrm{g}/ml),{\;}NaN_3{;\}(\leq{\;}50mM)$ and DNP ($\leq{\;}5mM$) significantly increased MTT reduction, the effect of which was specific to astrocytes. AA (5 and $10{\;}\mu\textrm{g}/ml$) did not affect LDH release and [$^3H$] glutamate uptake, indicating that these compounds increased MTT reduction at the low concentrations without cellular membrane damage. However, the low concentrations of AA produced significant decrease of MTT reduction in a glucose-free medium. Low concentrations of AA (1 and $5{\;}\mu\textrm{g}/ml$) did not change ATP production of astrocytes in the medium containing 10 mM glucose, but completely inhibited in a glucose-free medium, suggesting marked increase of cytosolic ATP production by the blockade of mitochondrial ATP production with low concentrations of AA. These results suggest that astrocytes have ability to enhance neuronal function or survival under conditions of incomplete ischemia or early by enhancement of glycolysis, and that cellular reduction of MTT occurs not only mitochondrially but also extramitchondrially.

  • PDF

A Primer on Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Medically Refractory Epilepsy

  • Lee, Eun Jung;Kalia, Suneil K.;Hong, Seok Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.3
    • /
    • pp.353-360
    • /
    • 2019
  • Epilepsy surgery that eliminates the epileptogenic focus or disconnects the epileptic network has the potential to significantly improve seizure control in patients with medically intractable epilepsy. Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has been an established option for epilepsy surgery since the US Food and Drug Administration cleared the use of MRgLITT in neurosurgery in 2007. MRgLITT is an ablative stereotactic procedure utilizing heat that is converted from laser energy, and the temperature of the tissue is monitored in real-time by MR thermography. Real-time quantitative thermal monitoring enables titration of laser energy for cellular injury, and it also estimates the extent of tissue damage. MRgLITT is applicable for lesion ablation in cases that the epileptogenic foci are localized and/or deep-seated such as in the mesial temporal lobe epilepsy and hypothalamic hamartoma. Seizure-free outcomes after MRgLITT are comparable to those of open surgery in well-selected patients such as those with mesial temporal sclerosis. Particularly in patients with hypothalamic hamartoma. In addition, MRgLITT can also be applied to ablate multiple discrete lesions of focal cortical dysplasia and tuberous sclerosis complex without the need for multiple craniotomies, as well as disconnection surgery such as corpus callosotomy. Careful planning of the target, the optimal trajectory of the laser probe, and the appropriate parameters for energy delivery are paramount to improve the seizure outcome and to reduce the complication caused by the thermal damage to the surrounding critical structures.