• Title/Summary/Keyword: Cortical cells

Search Result 308, Processing Time 0.03 seconds

Role of a Burr Hole and Calvarial Bone Marrow-Derived Stem Cells in the Ischemic Rat Brain : A Possible Mechanism for the Efficacy of Multiple Burr Hole Surgery in Moyamoya Disease

  • Nam, Taek-kyun;Park, Seung-won;Park, Yong-sook;Kwon, Jeong-taik;Min, Byung-kook;Hwang, Sung-nam
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.3
    • /
    • pp.167-174
    • /
    • 2015
  • Objective : This study investigates the role of a burr hole and calvarial bone marrow-derived stem cells (BMSCs) in a transient ischemic brain injury model in the rat and postulates a possible mechanism for the efficacy of multiple cranial burr hole (MCBH) surgery in moyamoya disease (MMD). Methods : Twenty Sprague-Dawley rats (250 g, male) were divided into four groups : normal control group (n=5), burr hole group (n=5), ischemia group (n=5), and ischemia+burr hole group (n=5). Focal ischemia was induced by the transient middle cerebral artery occlusion (MCAO). At one week after the ischemic injury, a 2 mm-sized cranial burr hole with small cortical incision was made on the ipsilateral (left) parietal area. Bromodeoxyuridine (BrdU, 50 mg/kg) was injected intraperitoneally, 2 times a day for 6 days after the burr hole trephination. At one week after the burr hole trephination, brains were harvested. Immunohistochemical stainings for BrdU, CD34, VEGF, and Doublecortin and Nestin were done. Results : In the ischemia+burr hole group, BrdU (+), CD34 (+), and Doublecortin (+) cells were found in the cortical incision site below the burr hole. A number of cells with Nestin (+) or VEGF (+) were found in the cerebral parenchyma around the cortical incision site. In the other groups, BrdU (+), CD34 (+), Doublecortin (+), and Nestin (+) cells were not detected in the corresponding area. These findings suggest that BrdU (+) and CD34 (+) cells are bone marrow-derived stem cells, which may be derived from the calvarial bone marrow through the burr hole. The existence of CD34 (+) and VEGF (+) cells indicates increased angiogenesis, while the existence of Doublecortin (+), Nestin (+) cells indicates increased neurogenesis. Conclusion : Based on these findings, the BMSCs through burr holes seem to play an important role for the therapeutic effect of the MCBH surgery in MMD.

EFFECTS OF SOME ROOT END FILLING MATERIALS ON THE REPAIR OF PERIRADICULAR TISSUE (수종 치근단 역충전재가 치근단 조직 함유에 미치는 영향)

  • Cho, Yong-Bum;Hong, Chan-Ui;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.17-32
    • /
    • 1995
  • The purpose of this study was to examine the response of periradicular tissues to amalgam, IRM, Ketac-silver and MTA(Mineral trioxide aggregate) used as a root end fillings. The lower third and fourth premolars of 5 mongrel dogs were used. Each root was resected, followed by root end fillings with experimental materials. The animals were sacrificed after 16 weeks and radiographic and histologic results were evaluated. The results were as follows : 1. Severe inflammation around apex and disruption of cortical were noted in relation to the amalgam. 2. With IRM, there was severe infiltration of inflammatory cells around filling material, but healing of cortical bone was noted. 3. With Ketac-silver, mild inflammation and thick band of fibrous connetive tissue around filling material were seen, with a cortical bone healing. 4. In case of MTA, complete regeneration of cortical bone was seen, and free MTA was surrounded with newly formed bone tissue.

  • PDF

The Neuroprotective Potential of Cyanidin-3-glucoside Fraction Extracted from Mulberry Following Oxygen-glucose Deprivation

  • Bhuiyan, Mohammad Iqbal Hossain;Kim, Hyun-Bok;Kim, Seong-Yun;Cho, Kyung-Ok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.353-361
    • /
    • 2011
  • In this study, cyanidin-3-glucoside (C3G) fraction extracted from the mulberry fruit (Morus alba L.) was investigated for its neuroprotective effects against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Cell membrane damage and mitochondrial function were assessed by LDH release and MTT reduction assays, respectively. A time-course study of OGD-induced cell death of primary cortical neurons at 7 days in vitro (DIV) indicated that neuronal death was OGD duration-dependent. It was also demonstrated that OGD for 3.5 h resulted in approximately 50% cell death, as determined by the LDH release assay. Treatments with mulberry C3G fraction prevented membrane damage and preserved the mitochondrial function of the primary cortical neurons exposed to OGD for 3.5 h in a concentration-dependent manner. Glutamate-induced cell death was more pronounced in DIV-9 and DIV-11 cells than that in DIV-7 neurons, and an application of $50{\mu}M$ glutamate was shown to induce approximately 40% cell death in DIV-9 neurons. Interestingly, treatment with mulberry C3G fraction did not provide a protective effect against glutamate-induced cell death in primary cortical neurons. On the other hand, treatment with mulberry C3G fraction maintained the mitochondrial membrane potential (MMP) in primary cortical neurons exposed to OGD as assessed by the intensity of rhodamine-123 fluorescence. These results therefore suggest that the neuroprotective effects of mulberry C3G fraction are mediated by the maintenance of the MMP and mitochondrial function but not by attenuating glutamate-induced excitotoxicity in rat primary cortical neurons.

Attribution of Cortical Granules to Formation of Fertilization Envelopes and Polyspermy Block in Urechis unicinctus

  • Shin, Kil-Sang;Kwon, Hyuk-Jae;Kim, Wan-Jong
    • Animal cells and systems
    • /
    • v.9 no.2
    • /
    • pp.57-64
    • /
    • 2005
  • Cortical reaction and polyspermy block are well defined in most marine invertebrates. In Urechis species, the function of cortical granules (CGs) is not yet known, and there is controversy on whether the cortical reaction occurs, or the fertilization envelope (FE) is attributed to CG releases or functions to prevent polyspermy. This study was carried out to determine the cortical reactions and functions of the FE in Urechis unicinctus. Artificial insemination of the eggs revealed that CG release occurred to give rise to perivitelline space (PS) into the final FE. Both PS and final FE effectively blocked polyspermy. The final FE was accomplished within 10 min after sperm-egg initial binding. No massive release of CGs occurred within the early phase of 5 min after the initial binding, initially and the PS seemed to playa role to prevent polyspermy. The CG massively released its content into the PS in late phase of FE formation, and differentiated PS into five intermediate layers. The layers opened into each other by anastomosis, so that the final FE consisted of two layers, the inner layer ($15{\mu}m$ in thickness) and the outer layer ($1{\mu}m$ in thickness). The outer layer derived from vitelline layer and the inner layer consisted of PS and CG secretions. Immunofluorescence and confocal laser microscopy revealed that the spermatozoon took up residence in the egg cortex during FE formation and successive meioses of the fertilized egg. These results suggest that both PS and final FE of U. unicinctus were equivalent to the early and late block, respectively, of other marine animals.

The Effect of Sohaphyang-won's for Delayed Neuronal Death in Hypoxia (소합향원(蘇合香元)이 저산소증 유발 배양 대뇌신경세포에 미치는 영향)

  • Yun Kyoung-Sun;Jeong Sung-Hyun;Shin Gil-Cho;Lee Won-Chu;Moon Il-Su;Lee Ji-Hun
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.104-112
    • /
    • 2003
  • Objectives : The purpose of this study is to evaluate the effects of Sohaphyang-won and is to study the mechanism for neuronal death protection in hypoxia with Embryonic day 20(E20) cortical cells of a guinea pig(Sprague Dawley). Methods : E20 cortical cells, used in this investigation were dissociated in Neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Sohaphyang-won was added to the culture media for 72 hours. On 17 DIV, cells were given a hypoxic shock and further incubated in normoxia for another three days. On 20 DIV, Sohaphyang-won's effects for neuronal death protection were evaluated by LDH assay and the mechanism was studied by Bcl-2, Bak, Bax, caspase family. Results : This study indicates that Sohaphyang-won's effects for neuronal death protection in hypoxia is confirmed by LDH assay by the method of Embryonic day 20(E20) cortical neuroblast. Conclusions : Sohaphyang-won's mechanism for neuronal death protection in hypoxia restrains inflow of cytochrome C into cellularity caused by Bcl-2 increase and reduces the caspase cascade initiator caspase-10 and the effector caspase-3.

  • PDF

Antioxidant and Neuroprotective Effects of Perilla frutescens var. japonica Leaves (들깨 잎 추출물의 항산화 및 신경세포 보호작용)

  • Lee, Jong-Im;Jin, Chang-Bae;Ryu, Jae-Ha;Cho, Jung-Sook
    • YAKHAK HOEJI
    • /
    • v.52 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • The leaves of Perilla frutescens Britt. var. japonica Hara (Labiatae) are often used in gourmet food in several Asian countries. Two kinds of perilla cultivars, Namcheon (NC) and Bora (BR), have been respectively developed in Korea by the pure line of 'deulkkae' from the local variety and by the cross of 'deulkkae' and 'chajogi'. The present study evaluated and compared antioxidant and neuroprotective effects of the fractions prepared from the leaves of the two cultivars using cell-free bioassay systems and primary cultured rat cortical cells. We found that the spirit, chloroform, hexane and butanol fractions from NC and BR leaves inhibited lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In contrast, only the spirit and butanol fractions from both cultivars exhibited 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Among the fractions tested, the butanol fractions from NC and BR leaves exhibited the most potent antioxidant properties, and the butanol fraction from BR was more potent than the NC fraction. In consistence with these findings, the butanol fractions from both cultivars protected primary cultured cortical cells from the oxidative damage induced by $H_2O_2$ or xanthine and xanthine oxidase, with the BR butanol fraction being more active. The butanol fractions from NC and BR did not produce cytotoxicity in our cultures treated for 24 h at the concentrations of up to $100\;{\mu}g/ml$. Taken together, these results indicate that the leaves of the two cultivars of Perilla frutescens exert antioxidant and neuroprotective effects, and that the butanol fraction from BR leaves exhibits the most potent antioxidative neuroprotection among the fractions tested in this study.

Inhibition of Oxidative Stress-induced and Excitotoxic Neuronal Cell Damage by Xuesaitong Ruanjiaonang (혈색통연교낭(血塞通軟膠囊)의 산화적 및 흥분성 신경세포독성 억제작용)

  • Cho Jungsook
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • Xuesaitong Ruanjiaonang (XR), a soft capsule containing Panax notoginseng saponins as main ingredients, is believed to remove extravasated blood and increase cerebral blood flow by improving blood circulation, and therefore, has been used in China to treat ischemic stroke or hemiplegia caused by cerebral thrombosis. To characterize pharmacological actions of XR, the present study evaluated its effects on neuronal cell damage induced by various oxidative insults or excitotoxic amino acids in primary cultured rat cortical cells. The neuronal cell viability was not affected by XR with the exposure for 2 h at the concentrations tested in this study ($10{\sim}1000\;{\mu}g/ml$). However, significant reduction of the cell viability was observed when the cultured cells were exposed to XR at $1000\;{\mu}g/ml$ for 24 h. XR was found to concentration-dependently inhibit the oxidative neuronal damage induced by $H_{2}O_2$, xanthine/xanthine oxidase or $Fe^{2+}$/ascorbic acid. In addition, it dramatically inhibited the excitotoxic damage induced by glutamate or N-methyl-D-aspartate (NMDA). We found that the NMDA-induced neurotoxicity was inhibited more effectively and potently than the glutamate-induced toxicity. Moreover, XR was found to exert mild inhibition of lipid peroxidation induced by $Fe^{2+}$/ascorbic acid in rat brain homogenates and some 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Taken together, these results demonstrate neuroprotective and antioxidant effects of XR, showing inhibition of oxidative and excitotoxic damage in the cultured cortical neurons, as well as inhibition of lipid peroxidation and its radical scavenging activity. Considering that excitotoxicity and oxidative stress pl ay crucial roles in neuronal cell damage during ischemia and reperfusion, these results may provide pharmacological basis for its clinical usage to treat ischemic stroke.

The Effect of Aucklandiae Radix.Moschus(木香.麝香)'s for Delayed Neuronal Death in Hypoxia (목향(木香) 및 사향(麝香)이 저산소증 유발 배양 대뇌신경세포에 미치는 영향)

  • Jeong Sung-Hyun;Shin Gil-Cho;Lee Won-Chu;Moon Il-Su;Ryu Do-Kyun
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.348-357
    • /
    • 2003
  • Objectives : The purpose of this investigation is to evaluate the effects of Aucklandiae Radix Moschus(木香 麝香)and to study the mechanism for neuronal death protection in hypoxia with Embryonic day 20 (E20) cortical cells of a rat (Sprague Dawley). Methods : E20 cortical cells used in this investigation were dissociated in Neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Aucklandiae Radix Moschus(木香 麝香) was added to the culture media for 72 hrs. On 17 DIV, cells were given a hypoxic shock and further incubated in normoxia for another three days. On 20 DIV, Moschus(麝香)'s effects for neuronal death protection were evaluated by LDH assay and the mechanisms were studied by Bcl-2, Bak, Bax, caspase family. Results : This study indicate that Aucklandiae Radix(木香)'s effects for neuronal death protection in normoxia and Scutellariae Radix(麝香)'s effects for neuronal death protection in hypoxia were confirmed by LDH assay in culture method of Embryonic day 20(E20) cortical neuroblast. Moschus(麝香)'s mechanism for neuronal death protection in hypoxia is to increase the anti-apoptosis protein Bcl-2. Conclusions : It may be reasonable to propose that Moschus(麝香) protects delayed neuronal death in hypoxia by increasing Bcl-2, thereby reducing mitochondrial permeability transition(PT) pores, the cytochrome c channels.

  • PDF